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Abstract :Motor neuroscience and physics-based character animation (PBCA) approach human and 43 
humanoid control from different perspectives. The primary goal of PBCA is to control the movement 44 
of a ragdoll (humanoid or animal) applying forces and torques within a physical simulation. The primary 45 
goal of motor neuroscience is to understand the contribution of different parts of the nervous system to 46 
generate coordinated movements. We review the functional principles and the functional anatomy of 47 
human motor control and the main strategies used in PBCA. We then explore common research points 48 
by discussing the functional anatomy and ongoing debates in motor neuroscience from the perspective 49 
of PBCA. We also suggest there are several benefits to be found in studying sensorimotor integration 50 
and human-character coordination through closer collaboration between these two fields.  51 

 52 
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Physics-based character animation and human motor control 105 

1. Introduction 106 

Human and primate neuroscience have studied motor control for more than 100 years (Rosenbaum 107 

2009). The overall objective of the field is understanding the biological mechanisms that support 108 

movement in humans and primates, using different methods from biomechanics, behavioural 109 

psychology, and motor neuroscience.  110 

Physics-based character animation (PBCA) is a rapidly evolving sub-field of computer graphics, with 111 

a much shorter history. The primary goal of physics-based character animation is controlling the 112 

movement of an interactive character simulated as a ragdoll by applying forces and torques within a 113 

physics simulation. The control of the interactive character can be a goal by itself, or a preliminary step 114 

before applying these same forces in a robot. The targeted character is generally a humanoid, sometimes 115 

a quadruped, but other animals can also be mimicked, like a dolphin (Grzeszczuk, Terzopoulos, and 116 

Hinton 1998) or an ostrich (La Barbera et al. 2021). Two of the main open challenges in the field are, 117 

first, understanding the extent to which the movement synthesized can adjust interactively to real time 118 

perceptions or external input and, second, finding out how to control movement that involves rich 119 

contacts with the environment, like object manipulation.  120 

These two research fields have developed quite independently. They often follow different 121 

methodologies and theoretical assumptions, and there are little cross-citations. However, it is easy to 122 

see convergent research objectives. Robotics and deep learning research are fields close to PBCA and 123 

have a rich tradition of exchanging ideas with human and primate motor control (Schaal and 124 

Schweighofer 2005; Floreano, Ijspeert, and Schaal 2014; Merel, Botvinick, and Wayne 2019). From 125 

this perspective, it seems reasonable that the functional characterization of how a human or a primate 126 

generates interactive behaviour can be modelled and validated in a simulation based on physics-based 127 

character animation techniques.  128 

The main motivation for this review is to better understand the different perspectives available to study 129 

human-character interaction in virtual reality (VR) experiences. VR devices are now available as 130 

consumer hardware and allow rich and close interaction between humans and virtual characters. VR 131 

characters can engage with VR users, and we can study how well they manage to achieve cooperative 132 

or competitive tasks, compared to how 2 VR users do it (Llobera et al. 2022). Comparing characters 133 

controlled with PBCA techniques and humans doing individual or joint tasks in VR can cement new 134 

ground for the study of interpersonal coordination and, in general, of behavioural studies which require 135 

inter-person interaction. It can also bring new performance benchmarks for physics-based animation 136 

controllers. In this review we will consider the following aspects of human (and primate) motor control 137 

from the perspective of human neuroscience and PBCA: 138 

1. Motor control integrates sensory input (to throw a ball to a target we need to know where the 139 

target is), and this sensory input produces significant behavioural variability. 140 

2. Skill acquisition is goal driven and can work from few examples (compared to a large use of 141 

the skill acquired and a large variability of behaviour produced)  142 

3. Emotion has a significant impact on behaviour, even in tasks non-related with the emotional 143 

state of the agent.  144 

4. Joint action synchronisation is a widespread and ubiquitous phenomenon. It occurs 145 

spontaneously and it has significant social consequences (like bonding) and cognitive 146 

consequences (like improving learning). 147 

Characteristics 1 and 2 are often considered in PBCA research, but characteristics 3 and 4 are generally 148 

disregarded. However, since these last two are of paramount importance in any task that involves 149 

coordination or social interaction, and our interest is in human-character interaction in VR, they are 150 

difficult to overlook. Given the broadness of the topic, we limit ourselves to humans (and primates, as 151 
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a proxy to humans) and to physics-based humanoid interactive characters. We also limit our scope to 152 

short-term motor control, and do not discuss motor planning or language-related movements. 153 

The document is organised as follows. In Section 2 we review the neuroscience of motor control. 154 

Section 2.1 reviews the extent to which principle-driven theories of motor function account for the four 155 

previous aspects in a coherent account of human (or primate) behaviour. In section 2.2 we explore in 156 

further detail the role associated with different parts of the nervous system involved in motor control, 157 

and to what extent this nuances the general theories introduced in section 2.1. We also use this section 158 

to introduce notions like latent spaces and forward models, which are ubiquitous in physics-based 159 

character animation. 160 

In Section 3 we turn to PBCA. In section 3.1 we review the building blocks available: physics engines 161 

and actuators generally used. Section 3.2 introduces forward models in the context of character control. 162 

Section 3.3 reviews inverse models, which form most of recent contributions to physics-based character 163 

animation. We first introduce essential definitions involved in deep reinforcement learning, the method 164 

on which most of inverse control models are based. A taxonomy of these methods is then introduced, 165 

based on two different strategies to handle the interactive aspect of motor control. We then discuss, for 166 

each strategy, the implications for training datasets associated with adopting one or another strategy, 167 

what does “learning motor control” mean, and the difference in the training setup. 168 

Section 4 reviews the field from a slightly more theoretical angle: can we characterize the space of 169 

motor actions? What is a distance between animations? We first review how this has been developed in 170 

PBCA, and then revisit the characterization of human motor control done in Section 2 from the 171 

perspective of PBCA research. We also comment the extent to which this perspective fits with ongoing 172 

debates on the organization of motor actions in the neuroscience literature. Section 5 discusses the open 173 

challenges involved in developing PBCA controllers that work better when engaging in cooperative 174 

tasks with humans, reviewing the four aspects of human motor control previously outlined and 175 

proposing possible directions forward. An appendix containing a glossary of PBCA terms is also added 176 

as an appendix to help the reader find more quickly the relevant terms. 177 

 178 

2. The neuroscience of human motor control 179 

2.1. Functional principles of human motor control 180 

There are different principle-based theories to model and interpret human motor control. These theories 181 

use functional principles: their development is based on principles that can be formalized 182 

mathematically, and evidence for their validation is sought with histological, physiological and 183 

behavioural approaches. None of the approaches address completely the four aspects of motor control 184 

in which we are interested (see Table 1), but they form a good starting point to try explaining motor 185 

behaviour, and in this section we will review summarily the main existing ones. We also introduce the 186 

idea of a forward model and a latent space, notions that are useful to understand motor control, both in 187 

biological systems and in artificial humanoids.  188 

2.1.1. Optimal Control Theory and Sensorimotor Integration  189 

Sensorimotor integration studies how we adapt our movement according to particular sensory input. 190 

Examples can be how we reach differently for a glass, depending on where it is on a table, or how we 191 

adjust the  swing of a bat to match an incoming ball. Principled approaches to sensorimotor integration 192 

have traditionally focused on insights derived from Optimal Control Theory (Bian, Wolpert, and Jiang 193 

2020; Mathis and Schneider 2021). Optimal Control Theory allows reconciling how for a given task 194 

behavioural goals are completed reliably while there is often large variability in the detail of the 195 

movements performed to achieve it (Todorov and Jordan 2002; Todorov 2004; Scott 2004). The 196 

essential assumption is that goal completion under noisy perception conditions is what explains 197 

trajectory variability. Based on this assumption experimental predictions could be made, which were in 198 

turn validated experimentally with animals or humans.  199 
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The main success of optimal control theory is introducing a principled way to explain how challenging 200 

actions that involve sensorimotor integration can be achieved through training. An important and 201 

widespread assumption of Optimal Control Theory is that the brain has an internal model of 202 

sensorimotor action (Wolpert, Ghahramani, and Jordan 1995) and, in particular an efferent copy which 203 

is used to predict the outcome of an action before it is executed. Comparing the predicted outcome with 204 

the perceived outcome, and allows correcting the action to achieve the targeted goal (Miall and Wolpert 205 

1996). This idea, the use of a forward model that, by predicting the outcome of performing a given 206 

behaviour, can help better control movement, is one that has found widespread developments across 207 

neuroscience, robotics, and character animation. More recent work combining Optimal Control with 208 

deep neural networks has also help map neural coding properties in the motor cortex (Lillicrap and Scott 209 

2013). 210 

Optimal Control Theory is sometimes presented as an alternative to PBCA to modelling sensorimotor 211 

control (Hausmann et al. 2021). However, the optimality assumption is also a limitation: it’s still unclear 212 

the extent to which this modelling approach can apply to complex movements, or to movements beyond 213 

relatively short timeframes (Merel, Botvinick, and Wayne 2019). Even less for behaviours that do not 214 

have a clear optimality criterion. It also fails to explain why or how emotion affects our behaviour 215 

(Rosenbaum 2009) or it impacts the outcome of physical activities (Beedie, Terry, and Lane 2000). 216 

Therefore, research in sensorimotor integration can skip entirely the assumption of optimality and focus 217 

on analyzing how different parts involved in motor control interact (Asan, McIntosh, and Carmel 2022) 218 

 219 

2.1.2. Free-energy minimization and Active Inference 220 

Free-energy minimization has been used as an underlying principle to explain human skill acquisition 221 

in both perception (K. Friston 2009; Costa et al. 2020) and action (K. Friston 2010) including motor 222 

synthesis and motor planning (K. Friston et al. 2016). From this perspective, there is a central, global 223 

task in the brain, which is to minimise sensory prediction error. The minimization is achieved through 224 

Hebbian learning (i.e., a biological neural network, opposed to back propagation used in artificial neural 225 

networks). Active Inference is an extension of the idea of free-energy minimization which proposed 226 

that the motor system acts in a way that helps match the body with sensory predictions about it (K. 227 

Friston et al. 2016). This minimization of sensory prediction error is achieved through an approximated 228 

variational Bayesian inference, with the brain storing values and generative firing rates that can be 229 

interpreted as subjective probability distributions. These variational inference mechanisms are 230 

hierarchical. Free-energy minimization and Active Inference have also been shown to connect closely 231 

with model-based reinforcement learning (K. J. Friston, Daunizeau, and Kiebel 2009; Sajid et al. 2021), 232 

a learning method actively being explored in physics-based character animation. However, the 233 

neurophysiological evidence for Free-energy minimization and Active Inference is mixed (Walsh et al. 234 

2020; Heilbron and Chait 2018). Some critiques argue that the theory is not precise enough to be 235 

validated in scenarios like humanoid control (Kogo and Trengove 2015), or that its technical 236 

assumptions are not realistic (Raja et al. 2021; Aguilera et al. 2021). It is also difficult to grasp the 237 

specificity of Active Inference, since some of its underlying assumptions can also be found in alternative 238 

computational approaches to cognition  (Sprevak 2021). What proponents and critics seem to agree on 239 

is that free-energy minimization and Active Inference have an ambition that goes far beyond task-240 

specific motor control. In this sense, it is a general theory of cognitive development. In addition, it is an 241 

ongoing research program targeting the entirety of cognition, and therefore future work may bring 242 

additional details to it and help show more general applicability. 243 

 244 

2.1.3. Dynamic Modelling and Joint action 245 

A third approach to modelling human motor control is the use of dynamic modelling. Dynamic 246 

modelling uses computational models derived from non-linear physics (inertia, friction, coupled 247 
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oscillators, etc.) to model aspects of biology or psychology. For example, it has been used to model 248 

how different parts of our motor control system interact (Martin, Scholz, and Schöner 2009) 249 

This modelling strategy has also been favoured by people studying joint action. Joint action researchers 250 

are interested in understanding motor behaviour when people engage in some joint activity (Knoblich, 251 

Butterfill, and Sebanz 2011). As such, their interest is in studying how motor coupling occurs between 252 

humans. Examples can involve spontaneous turn-taking or paying attention to the same stimuli, but the 253 

main focus is on motor synchronisation. This is considered both spontaneous (like the tendency to 254 

synchronize our steps when walking together) or voluntary (like when we try to play music together). 255 

Psychological results have shown that interpersonal synchronisation can have significant impact in 256 

terms of several aspects of prosocial behaviour (Cirelli, Einarson, and Trainor 2014; Rennung and 257 

Göritz 2016), trust, empathy or even improve learning transfer (Vink et al. 2017). In this context, 258 

quantitative models are often used as descriptive tools of how the coupling affects the behaviour of each 259 

individual (Noy, Dekel, and Alon 2011; Zhai et al. 2017; Calabrese et al. 2022). The modelling tools 260 

are derived from the physics literature, using coupled oscillators as the main modelling tool. In these 261 

scenarios, sensorimotor loops are assumed, but they remain far from being contrasted with realistic data 262 

at the perceptual or physiological level. Dynamical models are used in a more descriptive way, as 263 

opposed to optimal control theory or active inference, where models attempt to provide a functional 264 

explanation (i.e., achieve optimality, or reduce uncertainty). The mathematical assumptions are 265 

introduced to capture relations between different systems, but do not assume particular underlying 266 

principles. As such, they drive no explanation in terms of how these relations have been established, or 267 

how they affect motor learning. 268 

 269 
Table 1: Different principle-driven theories of motor control account for some but not all of the aspects in which 270 
we are interested to understand motor control in human-character interaction scenarios 271 

Optimal Control Theory 

1. Very good account of how sensory input produces behavioural variability 

2. Optimality principles help reduce the need for massive datasets 

3. Not compatible with behaviour affected by emotional state 

4. Doesn’t consider joint action scenarios 

Active Inference 

1. It can explain cases where motion is only useful to improve perception 

2. Potential to derive optimality principles, although cases developed are too simple  

3. No focus on the extent to which behaviour is affected by emotional state, or why this 

happens 

4. Doesn’t tend to consider joint action use case 

 

Dynamic Modelling 

1. It can create rich behaviour from simple models with few parameters 

2. It is difficult to address skill acquisition since it does not develop on learning mechanisms 

3. Affective states can be shared or induced, but no explanation on the physiology behind it is 

addressed. 

4. Focuses on modelling the establishment of psychological features from different kinds of 

behavioural and physiological coupling 

2.2. Functional Anatomy of human motor control 272 

Human motor control involves the coordinated recruitment of different parts of the nervous and 273 

muscular system. Ultimately most of the brain processing is oriented towards generating some kind of 274 

behaviour, but here we will focus on the parts that focus specifically on motor control, excluding 275 

language-related centres, sensorimotor loops, and motor planning (see Figure 1). 276 

 277 
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 278 
Figure 1: A schematic diagram of the anatomy of motor control and the purpose of information exchange 279 
between these areas 280 

 281 

2.2.1. Muscles 282 

Muscles are the actuators of our motor control system, how humans move. They generally involve pairs 283 

of them which, when activated, generate antagonistic movements (for example, an arm flexion or 284 

extension). They react to signals coming from the spinal cord (excepting the muscles related with eye 285 

and face muscles) and send proprioceptive feedback to the spinal cord from both the centre of the fibre 286 

and from the Golgi tendon organ, situated at the extreme. An important aspect of having pairs of 287 

opposed muscles is that they allow controlling not only the position and speed of the different body 288 

parts, but also the stiffness of a given articulation (Rosenbaum 2009). When used in the PBCA, these 289 

tend to be modelled as Musculo-Tendon Units (J. M. Wang et al. 2012) 290 

 291 

2.2.2. Spinal Cord 292 

The spinal cord acts like a transducer of the motor neurons to muscular activations. They do this within 293 

the loop that connects afferent receptors and muscle activation, and which produces the arc reflex. 294 

Therefore, the transduction of actuation signals from the brain also integrates, to some extent, the 295 

proprioception input. A significant point for later discussions on motor encoding is recurrent inhibition: 296 

Renshaw cells, which receive the signal of the motor neuron bringing the signal from the brain, can 297 

inhibit the motor signal. This is believed to help the motor signal to have more fine-grained effects. 298 

Reciprocal inhibition is also a well understood mechanism between the spine and opposing muscles, 299 

which allows regulating the stiffness of a given articulation (Rosenbaum 2009).  300 

There is also converging evidence suggesting that the spinal cord triggers patterns of muscle activation 301 

in modules (Bizzi et al. 2008). It is also important to consider that not only actuator forces but also the 302 

stiffness of joints is actively changed in different moments of everyday tasks like walking (H. Lee, 303 
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Rouse, and Krebs 2016). Regarding connectivity, the spinal cord is essential to study sensorimotor 304 

integration. It relays sensory afferents from the muscles to the somatosensory cortex, the thalamus, and 305 

the cerebellum. It also connects the motor commands from the motor cortex with the muscles (Asan, 306 

McIntosh, and Carmel 2022). 307 

 308 

2.2.3. Basal Ganglia 309 

The Basal ganglia is a large brain region whose largest part is the striatum. It has motor, associative and 310 

limbic domains, and it plays a role in the execution of plans (Rosenbaum 2009), and more specifically 311 

in the performance and acquisition of new activities and tasks, the creation of habitual responses and 312 

stopping an ongoing activity to switch to a new task (Lanciego, Luquin, and Obeso 2012). This is 313 

achieved through loops that go from the brain cortex to the basal ganglia, and map back to the cortex 314 

through the thalamus (Logiaco, Abbott, and Escola 2021).  315 

 316 

2.2.4. Motor Cortex 317 

The motor cortex is one of the most studied parts of the human brain. Motor cortex research has 318 

traditionally differentiated between the primary motor cortex and the premotor cortex. The primary 319 

motor cortex was interpreted as triggering motor actions in different body regions. In this view different 320 

parts of the primary motor cortex controlled different muscles, and the selection of which muscles were 321 

activated was done in an earlier processing step, assumed to occur in the premotor area, following the 322 

instructions provided by other brain areas, where decisions were made in an abstract domain. In this 323 

regard, it was interpreted as a hierarchical organization, where action preparation preceded action 324 

execution. This traditional view was strongly influenced by decades-old work showing that short bursts 325 

of electrical stimuli triggered muscular twitches in different parts, and that this was more apparent in 326 

the primary motor cortex than in the premotor cortex. This vision was popularized by Penfield’s 327 

homunculus, a representation of how the different body parts were represented in the primary motor 328 

cortex (see, for example, (Rosenbaum 2009) citing the original source found in (Penfield and 329 

Rasmussen 1950)).  330 

In recent years this view has been challenged by the work of Michael Graziano and his colleagues (M. 331 

Graziano 2006; M. S. A. Graziano and Aflalo 2007; M. S. Graziano 2016). The main claim is that the 332 

motor cortex, traditionally considered to map different body parts actually organizes behaviour in 333 

functional maps. The functional maps correspond to the most ethologically relevant behaviours (in 334 

primates). (M. Graziano 2008) highlights the very early work of Fritch and Hitchin in the late 19th 335 

century to argue these functional maps are best observed not with short stimulation bursts, but rather 336 

with stimulation that lasts at least as long as the movement targeted. In this view, the motor cortex 337 

coordinates complex actions within the behavioural repertoire. Recent evidence in the human motor 338 

cortex (Gordon et al. 2023) suggests this is a more accurate depiction of the function of the motor cortex, 339 

consistent with the idea that some aspects of action planning might derive from movement coordination.  340 

2.2.5. Somatosensory Cortex 341 

The somatosensory cortex is the main part of the brain cortex where proprioception signals originating 342 

in the muscles, and transmitted through the spine, are processed. It also integrates information from the 343 

visual and auditory cortices. In the same way that the primary motor cortex is associated with a map of 344 

muscles spread across the body, the somatosensory cortex is associated with somatotopy: a 345 

correspondence between body regions and parts of the somatosensory cortex (Sanchez Panchuelo et al. 346 

2018).  However, this picture has also been shown to require some nuancing. The somatosensory cortex 347 

has been shown to contain several spatial maps to control movement  (M. S. Graziano and Gross 1998). 348 

In addition, spatial maps stored in the brain can represent space either in an allocentric or egocentric 349 

reference frame (Gross and Graziano 1995), and activity in the somatosensory cortex is strongly 350 

modulated by motor activity (Forss and Jousmäki 1998). 351 
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Moreover, part of the the mirror system has also been identified with the ventral part of the 352 

somatosensory cortex (Rizzolatti and Craighero 2004). The mirror system gained large and widespread 353 

interest because it showed that it responded to action representation in both the self and in others. This 354 

has shown to have considerable importance, for example, in learning to performing an action from 355 

seeing other people perform it (Ramsey, Kaplan, and Cross 2021). There are other regions involved in 356 

spatial representations related to motor planning and the mirror system, but for the purpose of this 357 

review, where we focus only on motor control, this short introduction suffices. 358 

2.2.6. Cerebellum 359 

The cerebellum plays a critical role in fine-grained motor control. In terms of connectivity, it receives 360 

an efferent copy of the motor cortex relayed through the brainstem, and relays back information to the 361 

cortex, via the thalamus. It also receives proprioception signals, both directly as well as mediating the 362 

thalamus (Asan, McIntosh, and Carmel 2022). 363 

The classic model of the cerebellum, called Marr-Albus-Ito assumed it acted like a forward model (Marr 364 

1969), and was generally considered to learn with supervised learning (Albus 1971). In this view, the 365 

cerebellum predicts an outcome from motor commands and the perceived state of the body. It is 366 

interpreted as a forward model since from a set of muscle activations and the current body pose (position 367 

or rotation of different articulations, as well as contacts) it predicts a future body pose. The efferent 368 

copy postulated by Optimal Control Theory has often been identified with the cerebellum (Miall and 369 

Wolpert 1996). The cerebellum allows the motor cortex to compare the prediction of the forward model 370 

with the perceived outcomes, as estimated in the somatosensory cortex, and adjust correspondingly the 371 

motor actions. This is why lesions in the cerebellum result in problems in fine-grained coordination. 372 

However, it seems to do more things than predicting future poses. For example, it is important to 373 

regulate muscle tone (Rosenbaum 2009), it has been proposed to play a role in intuitive reasoning (Ito 374 

2008) and it is likely to play a role in agency (Welniarz, Worbe, and Gallea 2021). Moreover, 375 

reinforcement learning mechanisms have been proposed as a complement to supervised learning as a 376 

complementary mechanism to build the forward model of the cerebellum faster (Yamazaki and Lennon 377 

2019). 378 

2.2.7. Thalamus 379 

The thalamus is a region critical to integrate different stimuli and motor actions. Thalamocortical loops 380 

are crucial to multimodal perception (for example, integrating audio and visual stimuli) and to 381 

sensorimotor integration (for example, communicating somatosensory and motor cortices). It is also 382 

critical to relay signals from the basal ganglia and from the cerebellum towards the motor cortex. As 383 

such it is a critical part of motor coordination and, in general, of sensorimotor integration (Rosenbaum 384 

2009).  385 
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3. Tools and Strategies for physics-based character animation 386 

3.1. Physics simulation 387 

3.1.1. Physics Actuators and controllers 388 

Most of recent contributions in PBCA use servo-like actuators, where torques are applied on either 389 

hinge or ball-and-socket articulations. Virtually all the controllers mentioned in this section use these.  390 

There are two reasons to choose these: each joint has only one actuator, and therefore the dimensionality 391 

of the action space is lower. This simplifies the learning of the targeted tasks. The second reason is that 392 

when we compare them servo-like actuators give more effective controllers (Peng and van de Panne 393 

2017), possibly because they allow encoding an action space that is closer to a kinematic representation, 394 

as opposed to a force-related encoding. Since the targeted behaviours involve a spatial aspect (move 395 

forward, reach a target, etc.), this kind of encoding might be more effective. 396 

An aspect of physics-based animation controllers which is often mentioned tangentially but is of crucial 397 

importance to reproduce the different results discussed in this section is the use of Proportional 398 

Derivative (PD) controllers. A PD controller transforms a target rotation (in angles) into a torque force 399 

to be applied. Simple, traditional PD controllers take into account the current velocity of the joint. More 400 

sophisticated PD controllers like Stable PD (Tan, Liu, and Turk 2011) or Linear Stable PD controllers 401 

(Yin and Yin 2020) also take into account the relation of weights and inertias along the hierarchy of 402 

articulated rigid bodies forming a ragdoll. Most, if not all of the contributions discussed use Stable PD 403 

or Linear Stable PD controllers. As a result, the actions to be learnt are represented as target rotations 404 

for the actuators, but indirectly integrate weights and inertias within the learning loop. 405 

There are also some contributions that use Musculo-Tendon Units for locomotion (J. M. Wang et al. 406 

2012) sensorimotor integration (Nakada et al. 2018) or motion retargeting (Ryu et al. 2021), but they 407 

are the minority. Most contributions in physics-based character animation use servo-like actuators. 408 

Opposed to PBCA we will use the term kinematic controller to refer to methods that infer the pose of 409 

a character based on kinematic calculations, irrespective of any physical simulation. Traditionally, 410 

interactive character animation in videogames and virtual reality experiences has not been based on 411 

PBCA. Rather, it was resolved spatial constraints with methods such as direct and inverse kinematics, 412 

combined with collision detection methods. 413 

3.1.2. Simulation engines 414 

All PBCA controllers use a physics simulation, this is the space in which they act. Traditionally, 415 

research-oriented physics engines have been used. For example, (Peng et al. 2018; Won, Gopinath, and 416 

Hodgins 2020) used Bullet (https://pybullet.org). Works originating in the robotics literature tend to use 417 

Mujoco (https://mujoco.org/), such as for example (Merel et al. 2019). Others use DART 418 

(http://dartsim.github.io/), such as for example (Seyoung Lee et al. 2021). Finally, some of the more 419 

application-oriented work (such as (Fussell, Bergamin, and Holden 2021)) tend to use PhysX 420 

(https://developer.nvidia.com/physx-sdk), which is the de facto standard for product-oriented game 421 

engines such as Unity3D or Unreal Engine, and the ones used almost exclusively for virtual reality 422 

development. There are not many systematic comparisons between them, but (Erez, Tassa, and Todorov 423 

2015) implemented some test comparisons and showed game engines work better to simulate games 424 

and robotic-oriented engines work better to simulate realistic constraints and collisions. It is worth 425 

noticing that each of the different engines described are software projects that progress iteratively, and 426 

therefore it may be challenging to know the extent to which the latest version of one or another software 427 

project improves performance in one or another way.  428 

A relatively recent development, and potentially a transforming one, is the development of 429 

differentiable physics engines. The main advantage of a differentiable physics engine is that gradients 430 

of any variable involved in the physical simulation can be calculated explicitly, relative to any parameter 431 

of the simulation. Recent solutions have either been developed as novel tools (Degrave et al. 2019; de 432 

Avila Belbute-Peres et al. 2018; Freeman et al. 2021) or derived from existing physics simulators such 433 

https://pybullet.org/
https://mujoco.org/
http://dartsim.github.io/
https://developer.nvidia.com/physx-sdk
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as DART (Werling et al. 2021). As a result, PD controllers can use precise estimations of velocities in 434 

the immediate future. Crucially, deep Reinforcement Learning (RL) can use the gradient to learn much 435 

faster how a change in a force exerted on a specific rigid body will affect the physical simulation (a 436 

more detailed review of deep RL for PBCA is developed in section 3.3). Differentiable physics engines 437 

have also been combined with compilation in graphics cards (Freeman et al. 2021; Makoviychuk et al. 438 

2021) allowing to overcome significant bottlenecks in memory management and communication 439 

between the graphics unit and the central processing unit. The consequences have been massive training 440 

speed-ups, and unlocking the creation of physics-based animation controllers using an entirely different 441 

amount of training time (see, for example (Peng et al. 2022)). It is still an open research question, 442 

though, the extent to which policies trained in one engine can transfer to another engine or to real-world 443 

robots (see, for example (Exarchos et al. 2021)). 444 

 445 

3.2. Forward models for character control 446 

3.2.1. Trivial examples 447 

A passive ragdoll, as readily available in current game engines is a trivial example of a forward model 448 

for character control: the input is a configuration of articulation attached to rigid bodies with masses, 449 

plus contact forces, and the outcome is a set of rotations and velocities of the rigid bodies, calculated 450 

by the game engine. 451 

3.2.2. Forward models for action selection 452 

A simple example of forward model for PBCA can be found in (Grzeszczuk, Terzopoulos, and Hinton 453 

1998). A neural network was trained to find the right actuation forces that would maximize a given 454 

objective function. For example, it would learn to find which are the inputs were needed to match a 455 

distance to a goal or minimize the deviation from a desired speed. The learning process allowed finding 456 

which are the right forces to apply to maximize the objective function. 457 

A different use of a forward model is to model the environment. For example, in (Jordan and Rumelhart 458 

1992) a partially learnt forward model of the environment is used to help learn the right control policy. 459 

In (L. Liu et al. 2010) it was showed that sampling in the vicinity of the current pose and running 460 

forward simulations could be used to reconstruct contact forces, typically not available in a physics 461 

engine. In both cases, the forward model helped chosing the right action to obtain a targeted movement.  462 

More recently, (Fussell, Bergamin, and Holden 2021) showed that they could use a forward model of 463 

the entire physics simulation, as a proxy of what a differentiable engine would provide: the gradient 464 

that maximizes the reward that a deep RL seeks. Since differentiable physics engines are not available 465 

in commercial game engines (in 2023 commercial VR-compatible game engines mainly use PhysX), 466 

the authors showed that this forward model could succesfully stand in as a proxy for such differentiable 467 

engine. This strategy evokes the partially learnt forward model described in (Jordan and Rumelhart 468 

1992), and in both cases they transform the problem of training an inverse model for character control 469 

into a supervised learning problem, where the input is the current pose and the output is the targeted 470 

pose, which we can immediately calculate through the forward model. It also builds on earlier 471 

developments like (Heess et al. 2015), where it was shown that it is possible to learn to estimate the 472 

gradient. 473 
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 474 
Figure 2: A diagram showing how a latent space (z1..zn) is generated by forcing dimensionality 475 

reduction between a space of states and a space of actions (i.e., n < z and m < z)  476 

3.2.3. Latent spaces  477 

A machine learning construct that has shown very useful in developing PBCA controllers are variational 478 

auto-encoders (VAEs)  (Kingma and Welling 2014; Rezende, Mohamed, and Wierstra 2014). An 479 

autoencoder is composed of an encoder and a decoder. The encoder is a multi-layer perceptron that 480 

encodes a large input space to a lower-dimensionality space, which is called the latent space. The 481 

decoder in turns convert the latent space to a larger space. 482 

Due to its lower dimensionality, the latent space is generally interpreted to represent an efficient 483 

encoding of the larger dimensional input. The main difference between an autoencoder and a VAE is 484 

that a VAE allows exploring the latent space to generate a wide range of novel outputs, while 485 

maintaining the output variability within the space defined by the training data. In other terms: the space 486 

of possible outputs can be explored like a random space, but the behaviour generated will always have 487 

a resemblance with one part or another of the training dataset. An additional benefit of VAEs is that 488 

they can be trained offline, like a supervised learning problem, and therefore allow for greater 489 

generalization than RL setups. 490 

In section 3.3.3 we will discuss how these are used in the context of inverse models: latent spaces allow 491 

training a policy that selects the appropriate actions in a latent space of actions (which has much lower 492 

dimensionality) and to evaluate the rewards in the high dimensional space. Before, we need to introduce 493 

inverse models.  494 

 495 

3.3. Inverse models for character control 496 

Inverse models do the opposite than forward models: given a target pose, they suggest what forces 497 

should be applied to get the target pose. To create such controllers it is useful to consider three 498 

questions:  499 

1. How is the control of interactive behaviour approached? 500 

2. What reference animations and other data it uses for training? 501 

3. How is the controller trained? 502 

Since most of recent contributions to physics-based animation controllers are based on deep RL, we 503 

will adopt its terminology to review the different answers proposed to these questions. RL is a method 504 

to train an inverse model from inputs (states) and ouptuts (actions). In recent physics-based controllers, 505 

the RL components (see Figure 3) are identified with physical elements as follows: 506 

 The environment is any aspect of the physics simulation that affects the behaviour of the agent. 507 

This includes the body of the agent, represented as an articulated ragdoll, but also the physical 508 

simulation that calculates the dynamics update of the world in which the articulated ragdoll is 509 

embedded, the update of the rigid bodies forming the ragdoll and the actuators, which are often, 510 

but not always, Proportional Derivative (PD) controllers that map the target rotations to actual 511 

torques (and sometimes forces).  512 

 The states describe the physics simulation as perceived by the agent. In physics-based 513 

animation they generally include the rigid bodies forming the articulated ragdoll that is 514 
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controlled by the physics controller (i.e., their rotation and angular velocities). Sometimes they 515 

also include the state of a reference moving ragdoll (either from reproducing an animation or 516 

controlled by a kinematic controller), parameters like the target location (for an object to grasp, 517 

or for the body to walk to), a desired speed, and sometimes also information on the terrain or 518 

any other input relevant for the task. The states are updated at each simulation step. Sometimes 519 

they are referred as perceptions, to highlight similarities with sensorimotor approaches. 520 

 An action is a vector of elements to control an articulated ragdoll. These can be torques or 521 

activations of Musculo-Tendon Units for each articulated rigid body. However, they can also 522 

be target rotations or target velocities for each articulated rigid body, which are converted to 523 

torques by a proportional derivative controller.  524 

 The policy is a strategy that the agent uses to decide an action, taking as basis the state of the 525 

world. It takes the form of a function mapping states to actions. Policies are learnt in a training 526 

stage, and then used in an inference stage.  527 

 The reward is a scalar calculated from the states of the world. It is also updated at each 528 

simulation step. It is used in the training stage to update a value function, which is an estimate 529 

of the long-term value associated with performing an action in a given state. In physics-based 530 

character animation, training is most often done with actor-critic methods, where the policy 531 

function and the value function are trained simultaneously. The most common actor-critic are 532 

Proximal Policy Optimization (Schulman et al. 2017) or Soft actor Critic  (Haarnoja et al. 2018). 533 

However, we will also see other not only actor-critic methods are used for training, in certain 534 

proposals.  535 

 536 

Figure 3: Main components of a RL agent, adapted from (Sutton and Barto 2018). The dashed line in 537 
rewards reflects the fact that the rewards are only used in the training stage, not at the inference 538 

stage. 539 

The previous summary will suffice for this review. The reader interested in more details about how RL 540 

is used through the character animation literature can find a good survey in (Kwiatkowski et al. 2022). 541 

 542 

3.3.1. Two approaches to control interactive behaviour 543 

We now introduce a distinction in the way PBCA inverse models approach interactive control (i.e., the 544 

integration of interactive input). This distinction is not based on how training is set up, but rather on 545 

how different aspects of the environment affect the behaviour generated by the PBCA controller when 546 

it is deployed, after training (see also Figure 4): 547 
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 548 
Figure 4: Two strategies for interactive control in physics-based animation controllers based on deep 549 
reinforcement learning. In both cases part of the states represent the actual pose of the character, and 550 
the contacts with the floor or other elements. A: In kinematic imitators, the target pose is determined  551 

by a kinematic controller and the task of the RL agent is to imitate it as closely as possible. B: in 552 
sensorimotor controllers the movement generated by the physics controller is more directly affected 553 

by the target states. 554 

Kinematic imitators  555 

Kinematic imitators focus on training a physics-based controller to imitate a kinematic controller 556 

(Bergamin et al. 2019; T. Wang et al. 2020; Won, Gopinath, and Hodgins 2020). The physics-based 557 

controller does not handle the interaction with the environment or external inputs. Rather, the interactive 558 

input is integrated with kinematic methods. For example, if we want a character to move a hand to reach 559 

an object in a particular position, or we want a character to jump upon the press of a button, a kinematic 560 

controller will generate a set of references poses, which then will be imitated by the PBCA controller. 561 

The main benefit of this approach is that kinematic controllers are a mature and well understood 562 

technology, well adapted to the needs of the videogame industry, and the physics-based controller only 563 

needs to focus on imitating a set of target poses. Kinematic controllers can also integrate some 564 

processing within the training loop. For example, (L. Liu and Hodgins 2018) integrated trajectory 565 

optimization for the kinematics step within the RL training loop used to train the RL policy for the 566 

PBCA controller. In fact, interactive kinematic controllers are also a sub-field of research in itself  567 

(Holden, Komura, and Saito 2017; Starke et al. 2019; 2019; Holden et al. 2020; Xie et al. 2022; Hong 568 

et al. 2019). 569 

Sensorimotor controllers  570 

Sensorimotor controllers integrate interactive input with perception-action loops. This allows us to 571 

introduce parameters that affect the motor actions generated as perceptions (Peng et al. 2018; 2021). In 572 

sensorimotor controllers interactivity is based on introducing target states that are included in the state 573 

of the world being trained and affect the reward. For example, if we want a character to reach an object 574 

in a particular position, the target state is having the hand at the same position as the object. If we want 575 

a character to jump, the target state is having the character reach a certain height. These target states 576 

will have different values within the training procedure, values which are often generated randomly 577 
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within certain boundaries. During the inference stage the target state will take one specific value within 578 

those boundaries.  579 

In sensorimotor controllers these target states directly affect the policy at the inference stage, and 580 

therefore the movement synthesized. This is opposed to kinematic imitators, where the part involving 581 

interaction with the environment is addressed by the kinematic controller, reducing the task of the 582 

physics-based controller to match the kinematic pose as close as possible, while preserving balance, 583 

collisions, and other physical constraints. It should be noted that this distinction is not generally 584 

discussed in the literature, we have introduced it here since each option has considerable consequences 585 

for the design of the system. For a given paper, it is generally easy to assign it to one of the two 586 

categories just by looking at the general architecture and the training dataset, as discussed next. 587 

 588 

Despite that this distinction may seem trivial at first sight, it has considerable consequences for the 589 

controller. A summary of all the differences between Sensorimotor controllers and Kinematic imitators 590 

is found in Table 2. The following sections explain each of these aspects and detail references for each. 591 

 592 
Table 2: Implications of different strategies for interactive motor control 593 

 Sensorimotor controllers Kinematic imitators 

Purpose Generate specific actions 

integrating perceptions and 

task-specific goals 

Imitate any movement 

provided as input 

Use of Latent Spaces Yes, for distillation, or for 

acting in latent space 

Yes, for acting in latent space 

PD Controller No need to feed animation 

pose in inference (only when 

training, in reward) 

Feed with animation poses at 

every frame at inference 

Metrics between animations Only when used for reward 

design (mainly inspired from 

GANs) 

Used to cluster the animations 

in groups 

Learning architectures beyond 

RL 

Inverse recursive control Supervised reinforcement 

learning 

Complementary modules Compliance through perception 

of virtual displacement 

Time warping for movement 

variety 

Trajectory optimization 

Kinematic controllers 

 594 

 595 

3.3.2. Training datasets 596 

 597 

The two different approaches to interactive control imply the use of very different datasets: 598 

Large variability in reference motions 599 

Large-scale motion databases are typically used as a training reference by kinematic imitators. To add 600 

generality to this kind of physics-based animation controllers, a large variety of movements is needed 601 

(i.e., a motion database containing different activities like walking,jumping, dancing, etc.) . A direct 602 

way to have a large variability in the reference motions is to use large amounts of animations  (Won, 603 

Gopinath, and Hodgins 2020; T. Wang et al. 2020). These can be blended with different kinematic 604 

controllers. For example, (Bergamin et al. 2019) used Motion Matching (Clavet 2016; Holden et al. 605 

2020), while (Won, Gopinath, and Hodgins 2020) used Phase-functioned Neural Networks (Holden, 606 

Komura, and Saito 2017). It is even possible to train one physics-based controller with different 607 
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kinematic controllers to introduce further input variability (Won, Gopinath, and Hodgins 2020; T. Wang 608 

et al. 2020). When large motion databases are used it is important that the reference motions used in the 609 

training procedure are samples in a balanced way. This is done in order that the physics controller 610 

considers equally the imitation of the different families of reference motions.  611 

Sometimes, instead of large motion databases, specialized kinematic controllers are used as input to 612 

the physics controller. For example, in (Hong et al. 2019; Xie et al. 2022) we find  kinematic 613 

controllers specialized in football skills, which combine motion databases with sophisticated blending 614 

strategies. The output of the kinematic step is then fed to a physics controller.  615 

Small set of (or no) reference motions  616 

Opposed to kinematic imitators, sensorimotor controllers typically use a small set of reference motions. 617 

Sensorimotor controllers must modify the movement synthesized based on a target state (reach a 618 

targeted object with the hand, arrive to a targeted height with a jump). Therefore, the training must be 619 

specific for a given skill (reaching objects, jumping). This specificity comes together with a need for 620 

few animations. Each controller can either be trained from a single animation clip (Peng et al. 2018; 621 

Seyoung Lee et al. 2021) to a small number of clips (Peng et al. 2021).  622 

This strategy has been shown to extend to the discovery of new movements without any reference 623 

motion. For example, (Yin et al. 2021) demonstrated the discovery of athletic jumping strategies and 624 

(Frezzato, Tangri, and Andrews 2022) showed realistic get-up motions could also be discovered. These 625 

two contributions have in common that they target movements which involve strict physical constraints 626 

that can guide the discovery. (Chentanez et al. 2018) a recovery agent was designed to take over the 627 

control of a physic-based character in order to bring it back close to a reference trajectory. At that stage, 628 

a second agent trained on imitating a reference animation would take over, but the recovery agent did 629 

not use the reference animations. 630 

When no reference animation is used, constraining the style of the movement is a significant challenge. 631 

Older physics-based character animation strategies managed to learn high-dimensional control, but the 632 

style of the movement was awkward, unlike how humans move (Heess et al. 2017). (Yin et al. 2021; 633 

Frezzato, Tangri, and Andrews 2022) use a latent space of motions (see section 3.2.3) to control the 634 

style of the motion synthesised. (Tao et al. 2022) show how a physics controller learns to get up, but 635 

the insight to get natural looking motions come from using curriculum learning to constrain the 636 

controller towards using weak forces and contacts. In these cases, the physical constraints make it 637 

difficult to learn on the basis of a traditional imitation setup, but in turn facilitate the discovery of 638 

movements that look natural by reducing the space of possible actions.  639 

 640 

3.3.3. Training policies 641 

Model free RL 642 

Model-Free Deep RL was the paradigm in which convincing demonstrations of example-based motor 643 

control with physics-based controllers were initially demonstrated. For example, (Heess et al. 2017)  644 

showed model-free deep RL could be used to create physics-based characters that would walk or avoid 645 

obstacles. However, in the resulting characters the movement was outlandish, it showed unnatural poses 646 

and didn’t look like a human walking. This changed when (Peng et al. 2018) demonstrated how, through 647 

the use of a reference animation, an agent could learn to move forward or not fall, while preserving the 648 

animation style of the movement produced. Target movements demonstrated including walking, 649 

running, and throwing a ball, but also acrobatic movements like air kicks. For example, if the reference 650 

animation was throwing a ball, the training procedure could learn to generate different movements in 651 

order for the ball to reach different targets. This was achieved through a reward that would do a weighted 652 
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sum between, on one hand, generating motions that were similar to a reference animation and, on the 653 

other hand, the achievement of goals, like reaching a target. 654 

A major contribution of the article was recognizing the importance of combining reference state 655 

initialization and early termination. Reference state initialization reset the ragdoll in a position that was 656 

identical to the reference animation sampled in a random state. This allowed guiding the training, and 657 

was crucial to achieve complicated motions, like backflips. Early termination, in turn, ended the episode 658 

as soon as any of a set of failure conditions was met (for example, the ragdoll touching the ground with 659 

the hands, the head or the chest). At that stage the trial would be stopped and a new one would be 660 

launched. This allowed avoiding the exploration of a large space of possible movements and making 661 

the controller converge towards desirable solutions. Despite that reference state initialization and early 662 

termination  were not new (see for example (Peng, Berseth, and van de Panne 2016; Heess et al. 2016)), 663 

here it was showed how it worked for a variety of movements and characters, achieving for all of them 664 

high behavioural quality.  665 

The main limitation was that the controller would need to follow closely the animation during the 666 

training. Therefore, each controller was trained for a reference animation. A strategy to overcome this 667 

limitation was to shift the weight of the interactive control to a kinematics controller, which created 668 

kinematic imitators, as discussed (see also Figure 4).  669 

Strategies to build beyond these limitations within the subfield of sensorimotor controllers were either 670 

based on the combination of use of latent spaces (see next sub-section), on the development of distance 671 

metrics between animations or on the development of co-trained modules allowing to constrain the 672 

behaviour of the physics controller (these are discussed in sub-section 4.1).  673 

Model-based RL and latent spaces 674 

We talk about model-based RL when we use some model of the environment to train the policy. For 675 

example, in (Heess et al. 2015) a model of the environment is trained together with the policy to estimate 676 

the gradient of the physics simulation, something that succesfully improves learning. The assumption 677 

in these cases is that the forward model will be leveraged in the training process (Levine 2018). (Merel 678 

et al. 2019) showed it was possible to encode a large amount of RL-based expert controllers into a single 679 

latent space using a two-step procedure: first, each expert controller would be trained and, second, a 680 

latent space would be used to mimic their behaviour. As a result, they showed a unique motor controller 681 

would synthesize one or another behaviour based on a parameter applied in the latent space.  682 

Once the latent space is established, the encoder module can then be replaced with an RL controller to 683 

train other tasks. For example, (Merel et al. 2020) showed that once the latent space established, it was 684 

possible to use RL combined with curriculum learning in order to train a physics-based character to 685 

perform sequential tasks (picking up and carrying packages to a destination) and do so in a variety of 686 

spatial configurations (different spatial layouts, different object sizes). (Won, Gopinath, and Hodgins 687 

2022) showed a VAE pre-trained merely on imitation reference motions could then be reused by 688 

replacing the encoder with a closed-loop RL agent (see Figure 5). The RL agent was able to learn tasks 689 

that would otherwise be challenging to learn from scratch. An important consideration was that to 690 

balance the extent to which the learning procedure would adapt the behaviour to the new rewards while 691 

maintaining the style of the reference motion, a helper module (not depicted in Figure 5) was introduced 692 

in parallel to the decoder and trained together with the RL policy (see also (Won, Gopinath, and Hodgins 693 

2021)). (Peng et al. 2022) showed that within a latent space trained with reference animations allowed 694 

to discover control policies only from goal-based data, without reference animations. Recent results 695 

have also shown that such embeddings are also useful to combine policies focused on motor control 696 

with planning skills (Haotian Zhang et al. 2023; S. Liu et al. 2022).  These results suggest using a latent 697 
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space for motor representation can be hugely beneficial to train physics-based controllers that can be 698 

parameterized in a variety of ways.   699 

 700 
Figure 5: Once the latent space trained, the RL policy can replace the encoder, and then be trained through an 701 

output in the latent space(z < n) ). 702 

Alternatives to deep RL 703 

All the controllers introduced so far are trained using deep-RL architectures based on actor-critic 704 

training algorithms. However, this is not a universal strategy. For example, (Fussell, Bergamin, and 705 

Holden 2021) uses supervised reinforcement learning. The article uses a large motion database for 706 

training, and the outcome can reasonably be classified as a kinematic imitator.  707 

 708 

More recently,  (Leibovich et al. 2022) showed it was possible to steer the learning of a dynamics 709 

controller towards a desired trajectory using iterative inversion, thus suggesting that training 710 

sensorimotor controllers can also be transformed into a supervised learning problem. However, this 711 

strategy has not been demonstrated with full humanoids, and it is not clear if it will scale appropriately 712 

or not.  713 

 714 

4. The space of Motor Actions 715 

A recurrent question commonly found in PBCA research and motor neuroscience: how are different 716 

motor actions represented in a neural controller? The contrast between PBCA and motor neuroscience 717 

is striking. We first review a variety of metrics used to compare poses and motor actions in PBCA, and 718 

then turn to motor neuroscience to discuss the extent to which PBCA can help provide a complementary 719 

angle to the question of motor encoding.  720 

 721 

4.1. Encoding motor actions in PBCA 722 

4.1.1. Distances between animations and latent spaces 723 

A challenging aspect of designing a system for motor control is getting a reliable metric to measure 724 

distances between animations. In the case of physics-based animation controllers these metrics are 725 

typically used for clustering animations or for reward design.  726 

An animation is characterized as a time series of different poses. Each pose is generally defined as a set 727 

of rotations and a root translation, where the translation is a vector 3 and the rotations are expressed 728 

either as quaternions, reduced coordinates, or matrix rotations. Comparing two animations in a simple 729 

metric is not trivial, and different metrics have been proposed for different purposes. A metric can 730 

compare different fragments of each animation irrespective of the order of each animation or compare 731 

them frame by frame respecting the temporal sequence. A metric can compare only animation chunks 732 

of the same duration or consider animation references irrespective of their duration. The metric can be 733 

defined analytically or learnt from a dataset.  734 



21 
 

When training a single controller on large sets of animations (something typical for kinematic imitators), 735 

it is sometimes necessary to cluster animation sequences in similar groups. This can be necessary, for 736 

example, to pick training examples evenly among the different groups, and therefore force the controller 737 

to learn evenly across different domains. In this regard, (Aristidou et al. 2018) developed a distance 738 

metric based on clustering animation databases through a deep learning classification algorithm based 739 

on a triplet loss function. However, (Won, Gopinath, and Hodgins 2020) showed a simple metric can 740 

efficiently classify a database of movement clips in clusters of similar movements. Furthermore, they 741 

showed the resulting clusters were quite useful to train a physics-based kinematic animator sampling 742 

from the different clusters in a balanced way. If we look in the field of kinematic controllers, (Starke et 743 

al. 2020) developed the notion of local motion phases to use contacts to realign movements of different 744 

durations, something which allowed introducing distances between animations per limb, instead of 745 

considering the entire pose. 746 

When designing rewards for physics-based animation controllers, we first find analytic distances, like 747 

simple Euclidian distances between the trajectories of specific joints. For example, in (Peng et al. 2018) 748 

the quality of imitation is measured as the cumulated difference between, on one hand, the distance 749 

from the root to the end-effectors in the reference animation and, on the other hand, the same distance 750 

measured on the ragdoll controlled by the trained controller. The fact that the controller follows the 751 

animation frame by frame makes this metric very reliable. We find similar metrics in other sensorimotor 752 

controllers, but also in other kinematics imitators like (Bergamin et al. 2019). These simple metrics are 753 

used for reward quantification: the more similar the behaviour, the better the reward, and they were 754 

developed over time (see for example (L. Liu et al. 2010)).  755 

 756 

The introduction of more subtle metrics in reward design has unlocked some of the progress in 757 

sensorimotor controllers. For example (Ma et al. 2021) trained physics-based animation controllers 758 

with a looser definition of space time bounds. If a controller being trained would break these space time 759 

bounds, then the trial would be early terminated (see earlier discussion of early termination in sub-760 

section Model free RL, part of section 3.3.3) and therefore the style of the motions generated by the 761 

trained controller would respect the style defined. This allowed introducing style exploration within the 762 

behaviours synthesized by the physics controller. This style could be explored with heuristics or derived 763 

from motion datasets. 764 

It is also worth highlighting that the use of latent spaces, as previously defined, is a way to define a 765 

metric between poses, animations or even temporal windows involving combinations of torque 766 

actuations. The latent space is where proximity is defined, and it can be explored by random exploration 767 

within the latent space. However, even very basic aspects, such as the dimensionality that we should 768 

consider for the latent space, is up for discussion. What is a good trade-off between animation fidelity 769 

and space complexity? For example, in (Won, Gopinath, and Hodgins 2022) they use a latent space of 770 

dimension 25, while in (Merel et al. 2019) they use a latent space of dimension 60. There is some work 771 

like (Nachum et al. 2019) that discusses how to measure the optimality of a latent space for motor 772 

control, but it has not been applied to humanoid control. 773 

 774 

4.1.2. Style and affect in PBCA 775 

More generally, the topic of Style Transfer has been quite rich in developing metrics to capture the style 776 

of a motion without capturing its actual movement. These metrics attempt to differentiate between a 777 

joyful and a sad movement, or between a tired and an aggressive movement, irresepective of whether 778 

the animation consists in walking or jumping. For example (Aberman et al. 2020) proposed a metric 779 

based on (Aristidou et al. 2018) to extract movement and style separately, using different sources. The 780 

metric was extracted through a supervised learning algorithm based on animation chunks. This allowed 781 

synthesizing a behaviour imitating the style of a given animation, although performing the movement 782 
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of a second animation. (Park, Jang, and Lee 2021) used a metric developed for human action 783 

classification (Yan, Xiong, and Lin 2018). This was further expended in (Jang, Park, and Lee 2022) 784 

where it was shown that style transfer could apply to specific body parts. These works, despite 785 

interesting in the way they use distance metrics between animations, are generally based on 786 

architectures adapted from Generative Adversarial Networks (GAN) (Goodfellow et al. 2014), 787 

conditioned by the style targeted. In a GAN there is a Discriminator network, which tries to learn to 788 

distinguish between a set of reference examples and the output of a second network, the Generator. The 789 

Generator, in turn, is trained to generate images mimicking the style of a set of reference images from 790 

random noise. The criterion used for success of the Generator is that the Discriminator confounds the 791 

instances generated with the reference examples. The generative network tries to maximize the error 792 

frequency of the discriminator in a min-max game. If used directly to motion control a GAN would 793 

generate entire movement trajectories. It would therefore be impossible to use it for interactive control. 794 

 795 

A way to introduce ideas from style transfer in sensorimotor controllers, while keeping their parameter-796 

dependent nature has been through Generative Adversarial Imitation Learning (GAIL) (Ho and Ermon 797 

2016). GAIL extends the idea of a Discriminator to interactive control by comparing expert behaviours 798 

with the ones generated by a RL agent trying to imitate the expert. Despite not being peer-reviewed, 799 

(Merel et al. 2017) and (Torabi, Warnell, and Stone 2018) are often cited as showing that GAIL could 800 

be extended to cases where the discriminator had only limited information and, when the action selected 801 

by the expert was not available, that the discriminator in a GAIL could be trained on pairs of successive 802 

states (st, st+1) instead of being trained on pairs of state and actions at time t (st, at). Using the metric 803 

resulting from training a discriminator from pure perception of successive states (st, st+1), (Xu and 804 

Karamouzas 2021) showed it was possible to train a physics-based sensorimotor controller without any 805 

reward design. Moreover, the training procedure allowed learning a graph of possible transitions, where 806 

the transitions possible were defined by the ones not triggering a “not-reference-behaviour” detection 807 

by the discriminator. Similarly, (Peng et al. 2021) showed that using a discriminator allowed training a 808 

controller to imitate not only a single reference animation, but a variety of reference movement 809 

examples. The resulting controller generated motions that looked like a variety of reference motion 810 

clips -walk, run and roll, for example-, and managed to combine these behaviours to complete a goal 811 

(reach a target with their hand, for example). In the preprint (Escontrela et al. 2022) it is even shown 812 

that these strategy performs well when transferring to real world robots. 813 

 814 

4.1.3. Time-warping in movement dynamics  815 

We have discussed how discriminators can be co-trained with the closed-loop Deep RL. We have also 816 

mentioned how insight into the specifics of some movements allow guiding the training procedure 817 

through reward design. For example, in  (Tao et al. 2022) they constrain viable recovery movements to 818 

be weak motions, or in (Ma et al. 2021) they introduce style imitation by constraining the trajectories 819 

generated by the physics controller through space time bounds derived from animations used only as a 820 

style reference, not a movement reference. 821 

It is also possible to use insight into the specifics of some movements to redesign the entire RL training 822 

procedure, and not only the reward aspects. This allows creating more flexible sensorimotor controllers.  823 

For example, (Seyoung Lee et al. 2021) modified the training setup to show time-warping could be 824 

integrated within the training procedure. They showed that parameters that affect the movement 825 

duration can also be integrated in the training. This implies it is possible to parameterize factors like the 826 

height of a jump, which not only modifies the torques applied to the articulations, but also the duration 827 

of the jump. As a result, from a single animation clip it is possible to generate an entire family of 828 

interactive movements. The approach can also be used to train an agent to push objects of variable 829 

weight. It can also be used to learn to perform the same movement with different arm lengths. This 830 
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opens the door to a smart way to retarget physics-based animation controllers, transferring them 831 

between humanoids of different sizes and proportions.  832 

4.1.4. Compliance as virtual displacements 833 

More subtly, (Seunghwan Lee, Chang, and Lee 2022) showed that a compliance controller could 834 

provide virtual displacement information to the RL agent, who would in turn learn to minimize the 835 

contact forces between the hand and a contact object. This  improved the quality of the behaviour and 836 

increased the flexibility of the controller at the same time. For example, the opening of a door would 837 

look more natural, and would also better adapt to doors of different sizes. 838 

 839 

We have now reviewed all the relevant differences we have identified between sensorimotor controllers 840 

and kinematic imitators. For the reader interested in more detailed readings we summarize some major 841 

milestones of the last 5 years in each field in tables Table 3  and Table 4. 842 

 843 
Table 3: References for key achievements in sensorimotor controllers between 2018 and 2023 844 

Milestone Reference 

Flexible movement synthesis 

 one controller can learn different animations 

 Recovery from fall 

 Discovery of plausible movements 

 Movement adaptation to different durations 

 Compliance 

 Integration of objects with rich contacts 

 

 

(Peng et al. 2018) 

(Chentanez et al. 2018) 

(Yin et al. 2021) 

(Seyoung Lee et al. 2021) 

(Seunghwan Lee, Chang, and Lee 2022) 

(Hassan et al. 2023) 

Combination of different movements 

 Hand crafted state machine 

 Joint policy training 

 Emergent from adversarial training 

 Emergent from parameterized latent spaces 

 Emergent coordination from curriculum learning 

 Combining low and high level control policies 

 

(Peng et al. 2018) 

(Merel et al. 2020) 

(Xu and Karamouzas 2021) 

(Peng et al. 2022) 

(S. Liu et al. 2022) 

(Haotian Zhang et al. 2023) 

 845 
Table 4: References for key achievements in kinematic imitators between 2018 and 2023 846 

Milestone Reference 

Flexible movement synthesis 

 Kinematic navigation with physics-based 

control 

 Learning from massive motion databases 

 Conversion into supervised learning problem 

 Learning difficult tasks thanks to latent spaces 

 

(Bergamin et al. 2019) 

(Won, Gopinath, and Hodgins 2020) 

(Fussell, Bergamin, and Holden 2021) 

(Won, Gopinath, and Hodgins 2022) 

 847 

4.2. Questions in human motor control  848 

To give a richer perspective of ongoing debates in human motor control, in this section we introduce 849 

some of the recent debates in motor control, to then revisit them from the perspective of PBCA research. 850 

 851 

4.2.1. Do motor primitives exist? 852 

Given that PBCA mainly use PD controllers, and that PD controllers take target rotations (and 853 

velocities) as input, we might be tempted to think that, by analogy, the motor cortex represents actions 854 

in kinematic space (for example, angles and directions in space relative to a hand). This would also be 855 

useful to represent motor actions relative to surrounding objects and goals. 856 
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Alternatively, we might think that it stores motor actions as torques and combinations of torques, or an 857 

equivalent to torques that is closer to muscle activations. Intense debate on the topic and extensive 858 

experimental studies have shown that in the motor cortex we can find neurons that encode for each of 859 

those options (angle, displacement, force), and then several more cells in the motor cortex whose 860 

activity is motor related but does not fit in either (see an historical account in chapter 8 of (Lindsay 861 

2021)). In summary, PD controllers are quite different from muscles actuators (see section 3.1.1) and 862 

we should approach any proposal regarding motor encoding with caution, since there is no reason to 863 

assume that motor encoding is not developed ad hoc, or even differently for each task.  864 

A good way to review this cautionary tale is by revisiting the notion of motor primitives. Motor 865 

primitives have been conceptualised as sequences of actions that accomplish a goal-directed behaviour. 866 

The essential idea of a motor primitive is that there must be some “building blocks” to motor control. 867 

Motor primitives have also been identified with the underlying representation common to motor control 868 

and action recognition (Floreano, Ijspeert, and Schaal 2014). However, it has shown difficult to 869 

determine whether they should be defined in a kinematic space, or as attractors in a dynamic space of 870 

torques (Giszter 2015). Another argument for their existence has been to argue that it is impossible to 871 

learn a complex task from pure reinforcement learning, and therefore motor primitives must exist to 872 

guide this learning  (Schaal and Schweighofer 2005). However, the results obtained in PBCA research 873 

directly contradict this assumption. 874 

 875 

4.2.2. Is motor control hierarchical?  876 

Motor primitives also help supporting the view that motor control is hierarchical. A traditional view of 877 

the motor cortex, where different parts of the primary motor cortex controlled different body parts also 878 

favored a hierarchical view. For example, (Martin, Scholz, and Schöner 2009) identify the core function 879 

of the motor cortex to transduce the neuronal trajectory that predicts task-level motion into joint-level 880 

activation patterns. This fits with the idea of a motor planning at a task level, using motor primitives, 881 

followed by a transduction into force-related activations. However, (Martin, Scholz, and Schöner 2009) 882 

readily admit that coupling with downstream structures may also be important to determine these 883 

activation patterns.  884 

More recently, the view of motor control as a hierarchical system has been outlined in (Merel, 885 

Botvinick, and Wayne 2019), for both neuroscience and robotics. We agree with the authors who stated 886 

“As research into artificial control has developed, it has become clear that in addition to task 887 

objectives, system architecture design is also critical.” In this regard there is certain similarity with 888 

PBCA, where controllers have different parts and components which, only when combined, provide 889 

interesting solutions in terms of learning efficiency, flexibility and/or quality of the behaviours 890 

synthesized. However, our previous outline on the functional anatomy of motor control (see section 891 

2.2) suggests there is a need for significant coupling between activity in the motor and somatosensory 892 

cortices, the spine and the cerebellum. The emerging interpretation of the motor cortex we outlined 893 

suggests hierarchy within the motor cortex would be mainly ad hoc, depending on the motor movement 894 

targeted (M. Graziano 2008). Moreover, since the motor cortex also contributes to motor planning 895 

(Gordon et al. 2023), and motor control requires contributions from the somatosensory cortex and the 896 

cerebellum, it is difficult to argue that motor control is hierarchical. Opposed to this, we acknowledge 897 

that coupling between regions with different functional roles is key to generate the resulting 898 

functionality. From this perspective, it seems difficult to define cleanly the notion of motor primitives. 899 

 900 

4.2.3. Degrees of freedom and learning priorities 901 

A classical finding of motor neuroscience has been showing that complex patterns of movement can be 902 

generated in the spinal cord, without input from the brain. This is generally interpreted as indicating 903 

that the motor cortex does not encode completely for the action to be performed (Kalaska 2009). This 904 
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is often conceptualized as the degree of freedom problem: how to define a trajectory taking into account 905 

that actuators are redundant, and that several postures allow for the same end-effector position. 906 

Moreover, several configurations of muscle activations allow for a similar pose. Other authors have 907 

argued this to be a blessing: actuator redundancy may maximize, for a given trajectory, aspects such as 908 

stability, or compliance, or other dynamic aspects that go beyond a kinematic trajectory, and such view 909 

is sometimes characterized as Synergia theory (Latash, Scholz, and Schöner 2007) 910 

 911 

A related problem that is repeatedly mentioned in motor neuroscience is how to combine different 912 

priorities. For example, keeping balance and reaching a target with your hand. Regarding this, lambda-913 

theory proposes that control is exerted in positional frames of reference, and that changing these is what 914 

provokes a change in posture (Feldman and Levin 1995). This idea is argued to solve several challenges, 915 

such as the problem of how motor control to reach a target does not enter in contradiction with posture-916 

stabilizing mechanisms.(Feldman and Latash 2005). 917 

 918 

From the perspective of PBCA controllers, combining priorities like reaching a target and keeping 919 

balance is natural, similar to any embodied agent: learning occurs in a space that requires satisfying 920 

both priorities at the same time. In other terms: the combination of different priorities seems to be 921 

naturally achieved with solutions that emerge when learning in environments that require satisfying 922 

both. There is no need for the motor controller to explicitly encode for both priorities. Similarly, having 923 

redundancy in the actuators is not a problem. Rather, it allows exploring a richer space of actions, 924 

allowing for solutions that fit better in a heterogeneous space of desired solutions combining constraints 925 

of pose, balance, etc.  926 

 927 

4.3. A latent space in human motor encoding? 928 

In motor neuroscience, the motor control system is characterized as a functional anatomy of 929 

heterogeneous interrelated components (cerebellum, motor cortex, spinal cord, etc.). There might not 930 

be a unique way to interpret a motor command, but there are other aspects of motor organization that 931 

seem to allow for some common ground.  932 

If we look into recent results in the PBCA literature, a simple way to summarize all these properties 933 

might be to conceive the motor cortex being the encoder part of a VAE, and the spine the decoder part. 934 

The encoder would naturally fit the entirety of the motor repertoire in a reduced signal space, which is 935 

convenient for the anatomy of the cortico-spinal pathway, since it imposes a reduced space of signal. 936 

The VAE decoder (i.e., the spine) would be able to generate complex patterns from a reduced space of 937 

motor commands. The dimensionality reduction obtained is even more relevant if we consider actuators 938 

as MTU. MTUs are a better approximation to biological actuators than the hinge or ball-and-socket 939 

actuators associated with PD controllers, and more commonly used in PBCA research (see section  940 

3.1.1). They also have more degrees of freedom, and therefore the problem of controlling them would 941 

benefit more from a signal transformation that involves dimensionality reduction. 942 

In this picture the function of the motor cortex is close to Graziano’s interpretation: there is no 943 

fundamental distinction between the premotor cortex and the primary motor cortex, we do not consider 944 

action preparation associated to the premotor cortex, and specific parts of the motor cortex mapped to 945 

specific muscles. Rather, we consider the motor cortex to be encoding the repertoire of motor actions 946 

in a latent map, and integrating signals from spatial representations and motivation networks  947 

 948 

The assumption of a latent motor space established between the motor cortex and the spine would also 949 

impose considerable constraints on the rest of the control architecture (see an outline in Figure 6). 950 

Specifically: 951 
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a. If modelled with realistic MTUs, the module standing for the function of the cerebellum would 952 

need to process information on the state of the recurrent inhibition in the different parts of the 953 

spinal cord associated with the appropriate muscles, to know how to modulate the motor 954 

commands (through the thalamus). Information regarding proprioception would also need to be 955 

processed in the cerebellum to modulate the motor commands to seek compliance with objects 956 

manipulated and other contacts. All this would probably have to occur in latent space. This is 957 

far more sophisticated than current forward models implemented in the PBCA literature. 958 

b. The module standing for the thalamus would need to relay massively information between 959 

regions of the motor cortex, as well as the signals from the modules standing for the cerebellum 960 

and the basal ganglia towards the motor cortex. Moreover, it should do so decoding from a 961 

latent space of motor commands to an egocentric or allocentric space of motor effects. It is 962 

unclear how such connections would be established or learnt. 963 

c. The module standing for the basal ganglia would have to handle a dual function: modulating 964 

the movement synthesized to reflect particular emotional states, and trigger switches from one 965 

action to another. However, it is unclear why or how these two functions would need to be 966 

together, motion planning and synthesis of emotional states is quite independent in humanoid 967 

motor control and PBCA.  968 

d. It is unclear how a module standing for the somatosensory cortex would integrate 969 

proprioception signals transmitted through the spine. Proxies for the sensory streams from the 970 

visual and auditory cortices can be provided easily in a computer simulation. However, the 971 

somatosensory cortex would need to also integrate the signals coming from the proprioception 972 

input (and, eventually, decode them from the latent motor space). Physics engines typically 973 

report impulses associated with the resolution of a collision between two rigid bodies. 974 

Moreover, in physics engines the status of rigid bodies is often excluded from the simulation if 975 

they are at rest. It is therefore difficult to imagine how such data streams could be generated 976 

unless unconventional physics engines were used, or this information stream was replaced with 977 

complementary modules (for example, in a way similar to how compliance is enacted through 978 

virtual displacements in (Seunghwan Lee, Chang, and Lee 2022), similar to how  virtual 979 

displacements similar   980 

 981 

Overall, a significant effort would be needed to devise a training strategy that would, on one hand, allow 982 

controlling precisely variations in different tasks (for example, grasp an object in different positions, 983 

kick a ball in different directions) while integrating a variety of motor actions and, on the other hand, 984 

train the different modules to work consistently with each other. Most of the work cited for latent spaces 985 

is in the sub-domain of kinematic imitators (Won, Gopinath, and Hodgins 2022; Merel, Botvinick, and 986 

Wayne 2019) while the integration of external parameters to modify a particular behaviour is in the sub-987 

domain of sensorimotor controllers (Peng et al. 2018; Seyoung Lee et al. 2021).  988 

In summary: the notion of a latent space for motor control seems to fit naturally with different results 989 

in motor neuroscience. In PBCA research it also appears as a way to precisely control specific 990 

movements, while allowing for a variety of movements to be synthesized and combined. However, this 991 

proposal is speculative and considerable work will be required to combine all these aspects into a 992 

functioning and trainable architecture. 993 

 994 
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 995 
Figure 6: A schematic outline of a possible PBCA controller inspired in the functional organisation of human 996 

motor control as outlined in motor neuroscience. 997 

5. Discussion: Physics-based animation controllers and human motor control 998 

We have outlined how human motor control works, proposed a taxonomy of PBCA strategies and 999 

outlined a possible PBCA controller based on an interpretation of human motor control using ideas used 1000 

in PBCA research. To what extent motor neuroscience and PBCA research can converge? We structure 1001 

this discussion through four specific topics:  1002 

1. Sensorimotor integration 1003 

2. Skill acquisition  1004 

3. The role of emotion on behaviour control  1005 

4. Dynamic modelling and PBCA controllers 1006 

 1007 

5.1.  Sensorimotor integration without optimality? 1008 

Deep RL is often interpreted as being very similar to optimal control (see, for example (Merel, 1009 

Botvinick, and Wayne 2019). In the context of optimal control theory, the main contribution of PBCA 1010 

controllers based on Deep RL algorithms has been to show that principles similar to optimal control 1011 

could be used for bodies with more degrees of freedom. This view is also compatible with how 1012 

biological systems are characterized. In neuroscience, the reward is most often considered to be 1013 

provided by dopamine receptors. RL models were initially validated for attentional tasks (Fiorillo, 1014 

Tobler, and Schultz 2003), but dopamine receptors and the reward system is widespread enough, and it 1015 
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seems reasonable to assume it also affects motor control. In addition, recent developments propose that 1016 

RL-based rewards are actually based on estimating probability distributions, instead of scalar values 1017 

(Dabney et al. 2020). This nuances the notion of optimality associated with behaviour based on reward 1018 

expectation learnt through deep RL. 1019 

 1020 

However, PBCA also seem to provide a way to test several aspects of sensorimotor integration 1021 

without needing to assume optimality, or error-minimisation. For example, it is difficult to imagine 1022 

what kind of optimality criterion could be minimized to generate spontaneously synchronised behaviour 1023 

similar to the one we find when people engage in joint action tasks. However, we can imagine PBCA 1024 

controllers that generate such kind of coupled behaviour, and the criteria for judging their quality can 1025 

be based on the quality of the behaviour synthesized when performing a task with another agent or a 1026 

person, disregarding optimality in sensorimotor integration. In these scenarios the advantage of PBCA 1027 

compared to models based in optimal control is that we generate full body motion. This enables 1028 

performing studies similar to the ones in the joint action literature, instead of depending on constrained 1029 

tasks repeated exhaustively, as is typical in behavioural studies aiming at validating sensorimotor 1030 

integration mechanisms. 1031 

 1032 

The main ideas behind free-energy minimization seem to be quite in contrast with droping the 1033 

assumption of optimality to train PBCA controllers and mimic sensorimotor integration. A strong stance 1034 

of free-energy minimization is that learning to move involves minimizing some error. Free-energy 1035 

minimization and Active Inference suggest there is a unique, hierarchical, approximate, latent Bayesian 1036 

model of the environment and the self, and that the overall goal of our perception and behaviour systems 1037 

is to minimise a prediction error. One might argue that in most recent PBCA controllers a central part 1038 

of the architecture is a reward-based agent, and that maximizing a reward is equivalent to error 1039 

minimization. However, the rewards related with the outcomes of the behaviours synthesized – hitting 1040 

a target, displacing forward an object, walking in a particular direction, not falling – are always related 1041 

to the task being trained, and are always stated explicitly when implementing the PBCA controller. It 1042 

seems unclear how task-specific rewards can be reduced to some form of general perceptual error to be 1043 

minimized, as active inference seems to suggest. The motivation to perform a given action is extrinsic 1044 

to the motor control needed to execute this action, at least when conceiving motor control like it is done 1045 

in PBCA research. It seems difficult to consider that motor control can be driven solely by minimizing 1046 

prediction error without introducing some kind of motivation aspect for action selection and planning. 1047 

In this regard, it is difficult to reconcile PBCA research with free-energy minimization. 1048 

 1049 

Another aspect of sensorimotor integration that is relevant for PBCA research is simulating tasks that 1050 

involve rich contacts. Forward models have shown helpful to simulate tasks requiring rich contacts (L. 1051 

Liu et al. 2010).Virtual displacements have also shown useful to integrate objects with compliance 1052 

constraints (i.e., the opposite of stiffness) in the motion synthesized (Seunghwan Lee, Chang, and Lee 1053 

2022).  More recently (Hassan et al. 2023) shown that the training strategy used in (Peng et al. 2021) 1054 

can succesfully be adapted to integrate object manipulations that require rich contacts (for example,  1055 

sitting in  a chair, or grabbing a package and taking it somewhere). However simulations of tasks 1056 

requiring sophisticated manual manipulation of objects are still based on  kinematic based approaches 1057 

(Chen et al. 2022; He Zhang et al. 2021), the control method does not act in the space of forces and 1058 

torques. A richer representation of proprioception feedback could possibly unlock the exploration of 1059 

such tasks integrating forces, and not only in the kinematic space, thus allowing more sophisticated 1060 

object manipulation. However, current physics engines most often only offer contact information, 1061 

instead of contact forces, and therefore pose a challenge to such a research direction. 1062 

 1063 
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5.2.  Skill Acquisition 1064 

In motor neuroscience learning is assumed to occur through Hebbian learning. Currently we do not 1065 

know through what mechanism Hebbian learning solves the credit-assignment problem. This is a key 1066 

aspect of neural learning, one that in artificial neural networks is solved with back-propagation. (Payeur 1067 

et al. 2021) have proposed neural burst to be this unknown mechanism and, if confirmed, this could 1068 

introduce a radical change in the way we model biological networks as well as how we design artificial 1069 

neural networks. An efficient implementation of Hebbian learning in artificial neural networks may 1070 

bring a new generation of neuromorphic algorithms and hardware and transform entirely both 1071 

computational neuroscience and deep learning engineering. Meanwhile, we cannot truly test this 1072 

assumption with artificial neural networks since we have no alternative to backpropagation. We can 1073 

however address skill acquisition at a slightly higher level of description. 1074 

From the perspective of PBCA, research skill transfer in (Won, Gopinath, and Hodgins 2021; 2022; 1075 

Merel et al. 2020) has shown useful to address tasks that would be impossible to learn from scratch. 1076 

This also occurs in humans, where skills build from the competence achieved in previously learnt tasks.  1077 

In the cases where we train a controller to be able to modulate the height of a jump, the displacement 1078 

of objects of different weights (Seyoung Lee et al. 2021) or simply the distance achieved when throwing 1079 

a ball to a target (Peng et al. 2018), this is learnt through relearning the dynamical mapping between a 1080 

temporal series of target rotations and the resulting dynamics of the movement. In the cases where there 1081 

is also a compliance modulation (Seunghwan Lee, Chang, and Lee 2022), the policy learnt to implement 1082 

motor control integrating compliance (i.e., minimizing contact forces) also used displacement-like 1083 

inputs, even if those virtual displacements are generated in the compliance-focused module. PBCA 1084 

controllers seem to provide a good opportunity to test skill acquisition hypotheses within a learning 1085 

procedure based on sensorimotor integration.  1086 

 1087 

Considering the space of motor commands as a latent space is also useful as a model for skill transfer. 1088 

Physics-based animation controllers that use latent spaces (for example (Merel et al. 2019; Won, 1089 

Gopinath, and Hodgins 2022)) suggest training in a latent space works well. (Peng et al. 2022) showed 1090 

that creating a latent space trained to imitate reference motions is sufficient to discover specific skills 1091 

only from goals (i.e., without further reference animations), given enough training time. This suggests 1092 

the latent spaces used are an efficient encoding for motor control, in the sense that they help to reduce 1093 

the dimensionality of the control problem. This can also be used to distil a unique controller for several 1094 

expert behaviours or to use the trained controller into other tasks that would be difficult to learn from 1095 

scratch. This occurs within a heterogeneous control network, with different parts assuming different 1096 

roles: RL-based expert controllers have parameters that affect the behaviour generated (touching a 1097 

target, jumping a height), while decoders translate this to the higher dimensionality of the actuators, and 1098 

still PD controllers convert these signals from rotations to torques. The work developed in (Merel et al. 1099 

2019; 2020), as well as in (Peng et al. 2021) and (Won, Gopinath, and Hodgins 2022) shows a latent 1100 

space established through an imitation task can be re-used to achieve a more elaborate goal that requires 1101 

more complicated action coordination. This is implemented by retraining or replacing the encoder part, 1102 

therefore effectively creating a better controller within the latent space. For example, (Merel et al. 2020) 1103 

shows the encoder can then be retrained to sequence actions. (Peng et al. 2021) shows reaching a target 1104 

can be achieved by combining more reference animations –walk, run, crouch- instead of just one 1105 

reference animation like running or crouching. (Won, Gopinath, and Hodgins 2022) show that when 1106 

using a latent space defined by a VAE it is possible to learn new tasks that would be very difficult to 1107 

learn from scratch. (Merel et al. 2020) show that the same network used to distil different expert 1108 

controllers in a common latent space can be retrained to do some task sequencing, presupposing the 1109 

hierarchical nature of the task.  If any of these were performed by a biological system, we would argue 1110 

it reflects brain plasticity, and the capacity to adapt to novel tasks using old knowledge.  1111 
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5.3. Emotion Synthesis 1112 

In section 4.1.2 we have outlined how in PBCA synthesizing a movement style that reflects a particular 1113 

affective state can be trained to work independently from the task objective. In a sensorimotor controller 1114 

the reward components that relate to movement style can be trained using reference animations and 1115 

discriminators (Xu and Karamouzas 2021; Peng et al. 2021). Techniques from style transfer can also 1116 

be used (Aberman et al. 2020).  1117 

In human motor neuroscience there is surprisingly little work on the impact of emotion on motor control 1118 

(Rosenbaum 2009). We do know that affective valence can have an impact on movement accuracy 1119 

(Coombes, Janelle, and Duley 2005). There also exists some work showing we perceive affect from 1120 

motion data (Johnson, McKay, and Pollick 2011; Pollick et al. 2001). Being able to synthesize motion 1121 

that shows affect independently from the motor task being performed would certainly simplify the study 1122 

of affect perception. It could also help studying the impact of affective state in joint tasks. We know 1123 

that factors like intimacy can affect joint motor performance (Preissmann et al. 2016), but it is 1124 

challenging to study such mixed effects without being able to systematically manipulate the affective 1125 

state displayed by the motion synthesized. Overall, there seem to be significant potential contributions 1126 

of PBCA research in the study of the impact of emotions in motor control. 1127 

 1128 

5.4. Dynamic modelling and PBCA 1129 

Approaching character control as a dynamics problem, and exploring a solution based on PBCA 1130 

naturally integrates the idea of sensorimotor integration. In joint action, interpersonal coordination is 1131 

assumed to emerge through the interplay of separate forward and inverse models to simulate one’s own 1132 

and others’ actions (Keller, Novembre, and Hove 2014). 1133 

One option is to approach this problem from the perspective of kinematic imitators. In works like 1134 

(Bergamin et al. 2019) or (Won, Gopinath, and Hodgins 2020) most of the interactivity is managed in 1135 

the kinematics space, while the physical controller only integrates the outcome of the kinematic 1136 

controller within the constraints of the physics simulation. Kinematics-based controllers have shown to 1137 

be capable of learning physically-plausible movements like taking a seat, while respecting all the 1138 

physical boundaries, including different spatial configurations and different seat sizes ((Starke et al. 1139 

2019)). It is therefore possible that they can also learn to synchronize with the behaviour of another 1140 

agent, despite requiring skills to anticipate the movement of another agent. 1141 

However, we believe it has more scientific interest to explore an approach to joint action from the 1142 

perspective of sensorimotor controllers. A key contribution to obtain a sensorimotor controller that 1143 

synthesizes good quality behaviour is that in training the animation created by the controller is 1144 

constantly compared with a reference animation. This reference animation (Peng et al. 2018; Seyoung 1145 

Lee et al. 2021) can be interpreted as a simple and robust forward model used by the inverse controller 1146 

to guide the learning process: given the current pose and forces applied, it gives an indication of which 1147 

is the desired pose in the next frame, and therefore guides the search of the forces to apply. 1148 

In the brain the cerebellum acts as a forward model to ensure fine-grained coordination. It may also 1149 

contribute to long-term motor memory formation of the environment in which the motor action is 1150 

performed (Hikosaka et al. 2002; Imamizu et al. 2000). As previously described, the somatosensory 1151 

cortex also constructs representations of the actions of others, and this has an important role in motor 1152 

learning (Rizzolatti and Craighero 2004; Ramsey, Kaplan, and Cross 2021).  1153 

This suggests that building forward models that contain richer representations of reference movements 1154 

and of the movements of others might contribute significantly to creating sensorimotor controllers for 1155 

characters capable of joint synchronisation with humans in collaborative tasks. In practice, it implies 1156 

modelling human sensorimotor integration as a dynamical system, as done for example in (Calabrese 1157 

et al. 2022), and exploring whether integrating such computational models in sensorimotor controllers 1158 

creates the desired behaviour. It therefore allows to naturally combine dynamics models of joint action 1159 
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with PBCA controllers. This could be a first step towards a PBCA controller closer to the outline 1160 

introduced in Figure 6. The result could be a new generation of humanoid characters, capable of 1161 

sophisticated interaction and coordination with humans. 1162 

Supporting sensorimotor affordances is also critical to the feeling of plausibility that can be experienced 1163 

in virtual reality (Slater 2009). It therefore seems that virtual reality is a natural environment where to 1164 

test such controllers in coordination with other virtual characters or humans immersed in virtual reality 1165 

(Llobera et al. 2022). Virtual reality also provides precise tracking information of virtual reality users 1166 

pose, gaze and even facial expressions, therefore simplifying the construction of self and other 1167 

representations. 1168 

Finally, sensorimotor controllers also seem closer to an enactive perspective, as developed first in 1169 

neuroscience (Varela, Thompson, and Rosch 1991) and with subsequent influence in robotics  (Sandini, 1170 

Metta, and Vernon 2007), where an agent learns to interact with its environment through coupled action 1171 

and perception, and perception can only be understood through the idea of sensorimotor loops (Noë 1172 

2004). Enactive theory highlights the importance of motor control and sensorimotor coupling for 1173 

general learning. Despite not being a theory specifically for motor control, it suggests developing such 1174 

controllers might bring a new angle to the study of cognitive aspects such as agency and decision-1175 

making. 1176 

 1177 
6. Conclusions 1178 

PBCA research has shown impressive developments in recent years, borrowing ideas from the larger 1179 

fields of interactive character animation and machine learning. To understand how the learning modules 1180 

of these systems work we have introduced a distinction between two kinds of Physics-based controllers: 1181 

sensorimotor controllers and kinematic animators.  1182 

We have also reviewed the contributions of forward models of motor actions, deep RL for inverse 1183 

control, the challenges involved in defining metrics between animations and how these can be used to 1184 

improve PBCA controllers in different ways. 1185 

The motor neuroscience literature proposes different principled approaches to motor control, as well as 1186 

specific functions for different parts of the human motor system.  We have reviewed the extent to which 1187 

these make sense from the perspective of PBCA controllers and proposed to interpret the combined role 1188 

of the motor cortex and the spinal cord as the encoder and decoder parts of a latent space of motor 1189 

actions.  1190 

We have suggested that introducing more sophisticated forward models in PBCA controllers, similarly 1191 

to how the cerebellum encodes motor coordination in human motor control, may allow creating 1192 

humanoid characters that collaborate significantly better with humans in a shared virtual reality.  1193 

Overall we have argued PBCA controllers can help validate empirically whether some theoretical 1194 

proposals in motor neuroscience work in practice. This in turn may bring practical benefits in the fields 1195 

of human-character interaction and human-robot interaction. 1196 

  1197 
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Appendix. Glossary of terms and acronyms used in physics-based animation 1198 

Term Definition 

First 

introduced 

Differentiable Physics 

engine 

A physics engine which can explicitly give a gradient of 

any variable involved in the physics simulation, relative to 

a parameter used as input 

Section 

3.1.2, page 

12 

Forward model A computational model which, when queried with the 

current state of a system, answers with the predicted 

future state of a system.  

Section 

2.1.1, page 7 

Section 3.2 

page 13 

GAIL Generative Adversarial Imitation Learning. A training 

method based on comparing behaviour gneerated by an 

interactive controller and reference motions 

Section 

4.1.2, page 

22 

GAN Generative Adversarial Network. A Generative method 

widely used in the style transfer litterature 

Section 

4.1.2, page 

22 

Interactive control The control that is exerced integrating interactive input 

(for example, to hit a moving ball). 

Section 

3.3.1, page 

15 

Inverse model A computational model which, from a desired state 

(typically, a pose), predicts the actions (typically, forces 

and torques) needed to obtain that desired state from the 

current state 

Section 3.3., 

page 14 

Kinematic controller A character controller whose actions involve only 

positions and velocities (opposed to a Dynamics controller 

that also uses forces and torques in  a physical simulation) 

Section 

3.1.1, page 

12 

Kinematic imitator A physics-based animation controller that integrates 

interactive input with kinematic methods 

Section 3.3.1 

page 16 

Latent space A space of reduced dimensionality. Generally there is a 

mapping from the default space of perceptions or of 

actions through encoding and decoding modules. 

Section 

3.2.3, page 

14 

Musculo-Tendon units Musculo-Tendon Units model pairs of opposed muscles in 

PBCA research. Opposed to PD controllers they allow 

controlling not only the position and speed of the different 

body parts, but also the stiffness of a given articulation 

Section 2.2.1 

page 9 

Section 3.3.1 

page 12 

PBCA Physics-Based Character Animation: A set of techniques 

aiming at the control of an interactive character based on 

applying torques and forces to different body parts 

Section 1, 

page 5 

PD Proportional Derivative. A PD controller transforms a 

target rotation (in angles) into a torque force to be applied 

Section 

3.1.1, page 

12 

Policy A strategy that the agent uses to decide an action, taking as 

basis the state of the world. It takes the form of a function 

mapping states to actions. Policies are learnt in a training 

stage, and then used in an inference stage.  

 

Sectio n3.3., 

page 15 

RL Reinforcement Learning:A method to train an inverse 

model from inputs (states) and ouptuts (actions)  

Section 3.3 

page 

Sensorimotor 

controller 

A physics-based animation controller that integrates 

interactive input with perception-action loops 

Section 3.3.1 

page 16 

VAE Variational Auto Encoder. A method to generate a latent 

space that can be explored randomly to generate novel 

outputs. 

Section 

3.2.3, page 

14 

 1199 
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