
SIGGRAPH’21 Course Notes
New Techniques in Interactive Character Animation
Joan Llobera

joan.llobera@artanim.ch
Artanim Foundation
Geneva, Switzerland

Joe Booth
joe@joebooth.com

Independent Researcher
Seattle , USA

Caecilia Charbonnier
caecilia.charbonnier@artanim.ch

Artanim Foundation
Geneva, Switzerland

Figure 1: A character animated through physical torques applied over a ragdoll imitating a reference cynematic animation

ABSTRACT
The application of deep learning for physics-based character ani-
mation and for cinematic controllers for interactive animation is
changing how we should think about interactive character anima-
tion in video games and virtual reality. We will review the benefits
and drawbacks of the techniques used and the implementations
available to get started.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
Animation, Real-Time, Rendering, Machine Learning, Virtual Real-
ity
ACM Reference Format:
Joan Llobera, Joe Booth, and Caecilia Charbonnier. 2021. SIGGRAPH’21
Course Notes NewTechniques in Interactive Character Animation. In Special
Interest Group on Computer Graphics and Interactive Techniques Conference
Courses (SIGGRAPH ’21 Courses), August 09-13, 2021. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3450508.3464604

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’21 Courses, August 09-13, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8361-5/21/08.
https://doi.org/10.1145/3450508.3464604

1 COURSE OVERVIEW
Recent developments in machine learning are changing how we
should think about interactive character animation in video game
and virtual reality content production. In this talk we will review
existing techniques, mainly focusing on two distinct but converg-
ing topics: physics-based character animation, and animation con-
trollers for interactive animation. We will provide an overview of
the main techniques that exist, what are the benefits and drawbacks
for creating interactive animated characters, and what implementa-
tions of these techniques are available online.

Traditionally, character animation was based on blending cine-
matic trajectories created by animators. Transitions between anima-
tions were adjusted by hand, and interaction with the video game
simulation was hand-crafted. Creating sophisticated interaction or
dealing with many different animations often provoked different
sorts of integration bottlenecks. Physics-based animation offers the
potential to overcome all these limitations because the integration
of physics-based characters within the video game dynamics is
trivial.

Emerging animation controllers also simplify significantly the
creation of interactive animation. Nowadays, the use of controllers
trained on rich animation data sets allows to establish mappings
ever more abstract between user input and constraints for anima-
tion synthesis. As a result, it is now possible to control sophisticated
interactive characters using only high-level continuous input.

In this course we will review the main features of the solutions
that have been proposed, on what technical insights they are based,

https://doi.org/10.1145/3450508.3464604
https://doi.org/10.1145/3450508.3464604


SIGGRAPH ’21 Courses, August 09-13, 2021, Virtual Event, USA Llobera, et al.

the benefits and drawbacks of each of them, and themain challenges
remaining.

We will also review the main implementations available for
artists and software engineers to get started. In particular, we will
use the Marathon Environments project,1 which contains some
re-implementations of machine learning algorithms for interactive
character animation, to illustrate some of the challenges found in
different solutions proposed in the literature. The tool is available
open source, with a liberal license, and we invite anyone interested
in exploring their own solutions to use deep reinforcement learning
for interactive character animation.

This course is designed for software engineers who want to start
exploring how these techniques work, as well as for creative minds
who want to use these techniques without having to dig too deep
in the technical details.

2 COURSE CONTENT
1.Why physics-based characters?
1.1. The challenge. Implementing animation controllers introduces
significant overhead in video game and virtual reality (VR) pro-
duction. In production environments animation controllers can
provoke many different kinds of bottlenecks. Moreover, the chal-
lenges they introduce are often found at the intersection of artistic
skills (creating animations) and technical skills (programming the
connection between user input and changes in the behaviour of
the character).

Robust, more efficient methods for crafting interactive characters
are actively sought tomeet the ever-growing demand of video-game
consumers. In addition, the arrival of of Immersive VR headsets to
the consumer market introduces additional requirements to inter-
active character animation: VR users have a natural tendency to
expect the interactive behaviour of virtual characters to be closer
to natural social interaction rather than to video games.

In this course we will first outline the main methods by which
interactive characters are typically crafted, and then review a se-
ries of innovations that have happened in the last 5 years, focused
mainly on deep learning techniques applied to physics-based char-
acter animation and to innovative cinematic controllers. We will
review the main contributions of different papers, the results they
achieve, and what tools are available to the software engineer or
the creative mind wishing to get started.

1.2. Dominant Strategies in Industry . Currently, the main method
used to create interactive animations is based on segmenting ani-
mation sequences (see, for example, [1, 9]) , and defining points of
transitions among them, which are generally maped to transitions
in a state machine, or a hierarchical state machine. In this way,
animation cycles or one-shot animations are triggered through
changes in the state machine, which are themselves activated from
logical conditions, determined by the game logic or by the user
input.

These animation engines are generally available as built-in mod-
ules in what are the de facto standards of video game production
(Unity3D and Unreal Engine). A relatively recent alternative is the
use of Motion Matching, which we will review later on, as well

1github.com/joanllobera/marathon-envs

as alternatives recently proposed for them. Some rare games (for
example, Totally Accurate Battle Simulator, by Landfall Games), use
physics-based animation, but those remain the exception, rather
than the norm. In this course, while introducing the different tech-
niques for interactive character animation, we will review to what
extent they can be used to alleviate the challenges of creating inter-
active characters in video game production.

1.3. Virtual Reality Challenges. In VR, user input is not -or needs not
to be- provided through game pads, mouses or keyboards. People
immersed in VR move around, turn their heads, move their body,
and they typically have wands that detect where their hands are,
in addition to buttons. A head tracker detects in real time the head
position and orientation. Moreover, despite rarely used in gaming,
headsets provide microphones to introduce verbal input.

This multi modal, continuous input, supposes a considerable
change compared to traditional game input. In addition, virtual
characters appear much bigger, and much closer, to the user who,
because of being immersed in a 3D simulation of the size of the real
world, often has much higher expectations regarding the plausibil-
ity of the experience being rendered, something which becomes
particularly challenging for interactive characters.

2.Try it out
We begin the course with a hands-on approach. outlining the basic
steps to train a physics-based character, and the steps needed to
create a new one based on an existing cinematic character. This
part will be of most interest for artists interested in getting a first
hand idea of how the methods discussed work in practice, and how
physics-based character animation can fit within their process for
integrating interactive animated characters.

3. Kinematic controllers
3.1 Animation controllers without physics. State Machines are still,
today, the main method used to create animation controllers. De-
spite being robust, they present significant scaling problems, and
are difficult to debug when a character involves many different, but
related animations.

As a possible alternative, in 2013, Shoulson [15] showed how it
was possible to combine different animation controllers in a way
that allowed for more flexible blending of animations between tasks.
This was made possible by using choreographers, which were like
shadow poses which would synthesize the movements associated
with different tasks. The important aspect to highlight is that the
different poses would be combined according to a weight assigned
to each task . In addition, a physics choreographer would adjust the
resulting pose in order for it to be plausible physically, particularly
regarding balance.

The system had problems in scaling, since combining different
choreographers required some ad hoc coding. However, it already
demonstrated that we can separate, on one hand, the idea of move-
ment synthesis for a given task or a specific animation targeted and,
on the other hand, the problem of making the movement compati-
ble with physics. This direction has also been developed in articles
already described earlier [2, 18].



SIGGRAPH’21 Course Notes
New Techniques in Interactive Character Animation SIGGRAPH ’21 Courses, August 09-13, 2021, Virtual Event, USA

In this section we will assume compliance with the physics of
the environment is done in a second step of the character anima-
tion process, or that -as happens in certain scenarios- that it can
be entirely avoided. We therefore focus specifically on the tech-
niques (and demonstration projects) that are available to develop
innovative animation controllers.

3.2. Motion Matching (and improvements). Motion Matching was
proposed in 2015 by video game industry researchers [4] as a way
to get smoother transitions between animations. At the time it ap-
peared as amajor innovation in howwe couldmove away from state
machines. It was based on calculating the distance between differ-
ent poses of different animations. The ones with smaller distances
were considered possible transitions. Once this (large) number of
possible transitions was calculated, every frame or few frames the
animation engine would look into which one among the possible
transitions resulted in a pose closer to the targeted one, according
to simple criteria, like the direction and orientation of the character
if a transition to that animation chunk was performed. The system
was shown robust, particularly for navigation tasks, and it has been
adopted in an increasing number of commercial games. Different
improvements have been proposed for motion matching, maybe
most notable the recent contribution by Holden et al, [6], where the
use of a neural network trained with a motion matching controller
allows the same control with high-level controllers like a game pad,
but without the need to load in memory all the motion data and
possible transitions.

3.3. Different neural architectures for kinematic animation controllers.
Deep learning has had a significant impact in how physics-based
animation is thought. However, when we turn to animation con-
trollers we find different supervised learning architectures, such as
for example convolutional networks, LSTM architectures and, more
recently, transformer-based architectures. What are the benefits
and drawbacks of these? We review the most promising strategies,
and the implementations available.

3.4. Phase-based networks. A neural architecture that is specific to
animation controllers is the use of phase-functioned networks [7].
In phase-based networks, the training is associated with a cyclic
input which is used to control the phase of the animation to be
synthesised. For example,in a walking animation, the gait naturally
lends itself for the definition of a phase. Training a network like
this allows, at the synthesis step, to control quite well what phase
of the movement the animation is, it therefore helps synthesising
smooth transitions. However, this also limits the scope to which
such methods can be applied, since it is limited to motions for which
a global cycle can be determined. To put an extreme example, if we
want to synthesise an animation of a character that goes forward
on a mono-cycle while juggling, it would be impossible to define
a global phase for the two behaviours. More dramatically, when
cyclic behaviours are combined with non-cyclic behaviours (for
example, walking while gesticulating in a conversation), such an
approach cannot apply.

3.5. Constraints, Contacts and Boundaries. Traditionally, in inverse
kinematics, to prevent the limbs from adopting impossible configu-
rations, angular or positional constraints were introduced in the
solving algorithm. A similar idea has been recently developed in

[17] to solve the problem of global phases. By using the contacts in
a motion capture data set, he manages to determine a local phase.
In this way, a deep network can learn from motion capture data,
and the intervals between contacts can be used to control the ani-
mation synthesised, but only for the joints affected. The authors
demonstrate the idea very convincingly with motion data from
basketball players, where the walking and bouncing movements
can be controlled separately. Despite insofar this approach has not
been tested on different motion data sets, it offers a quite promising
approach.

3.1 Background: 3D Rotations and Inverse Kinematics. 3D Character
animation is, almost universally, based on skeletal animation (At
the exception of faces, which we will not cover here). As such,
animations are based on combinations of 3D rotations. To develop
efficiently physics-based character animation controllers, it is very
useful to be at ease with how 3D rotations are implemented in a
modern game engine, as well as the basics of Inverse Kinematics.

In modern game engines, 3D rotations are based on Quaternions,
which generalise complex numbers. The benefit is that rotations
can be represented in a very compact way (4 numbers), instead
of with rotation matrices (12 components), and that they have
interesting algebraic properties that make them suitable for simpler
calculations. A drawback is that, just like complex numbers, they
inhabit an abstract space with a circular topology, and it is therefore
difficult to derive statistical measures meaningfully. For example,
finding the average rotation of samples of a joint captured through
time cannot be done with a simple weighted average, and more
subtle methods must be found to average in the space of quaternion
(see, for example,[10]) or otherwise make statistical calculations on
spherical spaces (see, for example, [8]).

A detailed understanding of quaternion algebra is not needed to
understand the main ideas of this course. However, to understand
the technical detail of the implementations behind these solutions,
it is necessary to be comfortable with these operations. We also
recommend the person interested in such field to also get acquainted
with the twist-swing decomposition, at least for the cases where
decomposition is aligned with one of the main axis. A possible way
to learn those systematically is going through the course materials
and exercises that can be found here.

Inverse Kinematics (IK) was proposed as a solution to challenges
such as how to find the rotations of different arm joints in order that
the hand of a virtual character matches a given position. Initially,
the methods proposed where based on calculation of Jacobian matri-
ces or approaches based on gradient descent in multi-dimensional
spaces, but ultimately heuristic methods proved more robust and
intuitive, and they are most often used. Nowadays, the two main
methods used are Cyclic Coordinate Descent and FABRIK, for which
a summary description can be found in the slides supporting this
course. We refer to the tutorial found in [3] for a general intro-
duction to inverse kinematics, and to the FABRIK website2, sup-
ported by it’s main author, to know everything needed to use this
IK method, including references and implementations. We would

2http://andreasaristidou.com/FABRIK.html

https://joanllobera.github.io/teaching/animation-foundations
http://andreasaristidou.com/FABRIK.html


SIGGRAPH ’21 Courses, August 09-13, 2021, Virtual Event, USA Llobera, et al.

also like to point that IK is not a closed research area, with recent
contributions, such as [16].

Despite widely used in industry, the practice of configuring
how IK algorithms are applied on a given skeleton is tedious and,
sometimes, cumbersome. Blending IK algorithms with animation
sequences is always challenging: video game developers often must
create heuristics, depending on the animation sequence being ren-
dered, to apply IK solutions without deforming too much the anima-
tion sequence with which they are blended. It is therefore desirable
to find a way to circumvent IK strategies, or to improve upon exist-
ing solutions to simplify the integration of these technique with the
physics of the environment and the animation sequences rendered.

We provide links to resources for the person interested in getting
a better understanding of these notions.

4. Create your own physics-based animation
controller
4.1. Rag dolls vs Rigged Characters. Traditionally, in videogames rag
dolls have been used when characters die, or fall. In those cases, we
do not want the character to move following a predefined animation
or trajectory. Therefore, to create an interactive character we used
kinematic trajectories and, when some of these events happened,
we activated the ragdoll behind it.

This has changed, recently, mostly because of the tremendous
progress and accessibility of deep reinforcement learning tech-
niques. These techniques have made possible to find which are the
right forces and torques that need to be applied to ragdolls in order
that the resulting animation matches a targeted animation. This
change, suddenly, has open the way for combining traditional key-
frame-based animation and production pipelines based on motion
capture with physics-based characters.

4.2.Reinforcement Learning meets physics-based animation. Rein-
forcement Learning (RL) is a machine learning paradigm rooted
in behavioural psychology, in which an agent performs actions,
and perceives states of its environments. It learns on the basis of
rewards, which are also provided by the environment.

Presented initially in 2013 [11], to then being published in top
reference journals [12], agents showed model-free agents could
learn super-human skills in classic atari videogames. Since then,
the use of deep reinforcement learning has exploded, also unlocking
a radical improvement in physics-based animation.

The initial benchmarks showed deep reinforcement learning
could be used to have physical ragdolls walk, avoid obstacles, and
progress in different ways. Those showed that a problem considered
too difficult for traditional control theory could be addressed with
deep reinforcement learning. In these systems, the agent would get
positive rewards simply when the forces applied on the different
limbs made the character move forward, and negatives rewards
when it fell. However, the resulting characters were not usable in
production environments, due to the fact that the style of movement
was weird, and there was no obvious way to change it (for example,
as shown in [5]).

This changed when Peng [13] showed that using a reference
animation, and giving additional positive rewards also for having a
pose similar to the reference animation, the agent could learn to
move forward or not fall, while preserving the animation style of

the movement produced. A particularly interesting aspect of this
method is that it was simple: there were no particular assumptions
on the topology of the joints, nor on the kind of movement, nor on
the dynamics of the movement imitated. Target movements demon-
strated including walking, running, but also acrobatic movements
like air kicks. It worked on humanoids but also dinosaurs. The
authors also showed that introducing a random parameter position
at the training phase, with a positive reward for reaching it either
with the body or with a limb, or even with a ball, allowed using the
physics-based animation system as a controller: in the synthesis
phase it was possible to impose the position of the target, and the
movement was re-synthesised in a way that it reached the target.

Regarding limitations, the main was that the training had to
be done on one specific animation, which meant that combining
several animations required training a RL algorithm separately. At
the inference time, all the different resulting physics controllers had
to be loaded, and the system had to switch dynamically between
one or another. It was also necessary to place the physics actuators
manually, and the authors reported that doing so required some
skill and intuition, it could not done automatically.

Since then a large variety of improvements has been introduced.
For example, by introducing further flexibility in the input that the
system can ingest [2], or providing a universal controller of the
physical layer, where novel animations can be imitated, without the
need to re-train the agent controlling the physical forces applied
[18].

Overall, there are two main strategies to create physics-based
character animation controllers, and those depend on whether at
inference time there is a kinematic controller that the physics-based
animation controller imitates, or if at inference time the entire
animation is synthesised in a physics-based controller, without
reference to a kinematic controller or to a reference animation. In

4.3 Designing a reward. What are the essential considerations that
need to be you into account when designing a reward for a physics-
controller based on RL? We here review possible strategies, depend-
ing on the kind of physics-based character animation controller
you want to implement.

4.4 Adjust the physical environment. A considerable challenge, often
overlooked, is how to adjust the physical environment where the RL
agent learns. Should the agent learn to apply forces directly, or do so
through a PD controller? Should we add noise in the training data?
There is great variability in the existing literature regarding these
aspects, and often they seem a bit overlooked in the contributions.
However, these decisions have a major impact in the quality of the
behaviour synthesised and they should not be overlooked.

4.5. Adjust the training scenario. Early termination, first introduced
in [13], and recently further expanded in [18], has revealed to be a
simple yet robust solution to the challenge of optimisation when
combining multiple rewards. In general, when optimising parame-
ters under different constraints, it is quite possible that solutions are
not found because solutions that might be better when evaluated
with the metric associated to one constraint can be worse for a
metric associated to a different constraint. For example, applying
certain forces at a given moment might result in a ragdoll imitating
exactly a given cinematic trajectory, and therefore might give a



SIGGRAPH’21 Course Notes
New Techniques in Interactive Character Animation SIGGRAPH ’21 Courses, August 09-13, 2021, Virtual Event, USA

better reward in terms of pose similarity, but a worse reward in
terms of physical stability. Therefore, the learning mechanism that
might improve pose similarity could enter in conflict with the same
learning mechanism applied on improving physical stability. Since
we need the resulting system to do both, we need to find a way that
the learning mechanism improves all the metrics at the same time.

The problem of optimisation under multiple constraints is, in
general, difficult to address. However, here we can take advantage
of the fact that the environment is a dynamic one, and simple reset
the trial when any of the metrics is above a given threshold. In this
way, the only solutions explored are the ones that satisfy all the
constraints at the same time, with no possibility of conflict between
them. Moreover, it also saves time, since there is a considerable
space of possible solutions that is never explored: as soon as one of
the reward metrics goes above a threshold, the solution is discarded.

5. It’s your turn
5.1. Open challenges. A significant challenge in developing anima-
tion and physics controllers is animation sampling. As we saw, [13]
trained a different controller for each animation. Soon after that
publication, the same team demonstrated that motion extracted
from video could be used to train the same system [14].

More recently, in [18] it was showed that using a large sample
of animations on a given humanoid allowed for the generation of a
physics controller that could imitate any animation controller for
that humanoid. In practice, tests done internally to try to repro-
duce this paper suggest that this strategy can work as far as the
controller is smooth (i.e., motion matching is fine, but triggering
animations with a state machine introduces jumps that the physics
controller cannot imitate). A bigger challenge is that the sampling
of the animation space has to be done in a supervised manner: it is
necessary to choose which are the right animations that have to
be fed to the system, otherwise the system could over-learn some
behaviours (for example, walking vs. doing acrobatic jumps), if
there is more of such data in the training data.

The development of machine learning methods that generalise
across a large database of animations is till a considerable challenge

5.2 Your phyiscs-based controller. Physics-based animation solves
the challenge of integrating the behaviour of an interactive char-
acter within the video game simulation. However, animation con-
trollers based on deep learning architectures still offer more flexi-
bility to synthesise interactive behaviour. Despite this advantage,
kinematic animation controllers require models that are signifi-
cantly more complicated to put in place, when compared to RL
architectures, and they still need to be integrated with a physical
layer, either manually or with a learnt physics controller.

What is preventing us from combining both approaches? For
example, can we use some of the animation controllers described in
combinationwith a trained deep reinforcement learning system that
converts those into physical actions? Alternatively, can we create
a physics-based controller that does not depend on a kinematic
controller, but that consistently responds to user input and can
learn to imitate an arbitrarily large animation set? Which is the best
answer to these questions is still unclear, but all the tools needed
to answer are freely available for you to find the best answer for
your particular goals.

6. Questions
If you have specific questions on the course contents, or on how to
develop your own animation controller, please drop an email to get
in touch!

3 ABOUT THE INSTRUCTOR
Dr Llobera has done research at the intersection of virtual reality
and cognitive sciences for almost two decades. Initially trained
in electrical engineering, with masters in cognitive sciences and
software engineering, he did his PhD at Mel Slater’s Virtual Reality
Lab, and a Postdoc at Olaf Blanke’s Cognitive Neuroscience Lab.
He has also taught computer graphics and techniques for character
animation at the ENTI videogame school, associated to Univer-
sity of Barcelona, and been a co-founder of two companies. He
currently works at the Artanim Foundation as a senior researcher,
bringing novel techniques of character animation to virtual reality
experiences.

4 ACKNOWLEDGMENTS
We would like to thank the suggestions and animations provided
by Valérie Juillard, which made useful suggestions during the ex-
ploration on how to reproduce the benchmarks outlined in this
course, and crafted some of the animations that are integrated in
the Marathon Environments benchmarks.

REFERENCES
[1] Okan Arikan and David A Forsyth. 2002. Interactive motion generation from

examples. ACM Transactions on Graphics (TOG) 21, 3 (2002), 483–490.
[2] Kevin Bergamin, Simon Clavet, Daniel Holden, and James Richard Forbes. 2019.

DReCon: data-driven responsive control of physics-based characters. ACM
Transactions On Graphics (TOG) 38, 6 (2019), 1–11.

[3] Ronan Boulic and Richard Kulpa. 2007. Inverse Kinematics and Kinetics for
Virtual Humanoids.. In Eurographics (Tutorials). 173–243.

[4] Simon Clavet. 2015. Motion Matching - The Road to NextGen Animation. Proc
of GDC (2015). https://doi.org/watch?v=z_wpgHFSWss&t=658s

[5] Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg
Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, SM Eslami, et al. 2017. Emergence
of locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286
(2017).

[6] Daniel Holden, Oussama Kanoun, Maksym Perepichka, and Tiberiu Popa. 2020.
Learned motion matching. ACM Transactions on Graphics (TOG) 39, 4 (2020),
53–1.

[7] Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned neural
networks for character control. ACM Transactions on Graphics (TOG) 36, 4 (2017),
1–13.

[8] John T Kent. 1982. The Fisher-Bingham distribution on the sphere. Journal of
the Royal Statistical Society: Series B (Methodological) 44, 1 (1982), 71–80.

[9] Jehee Lee, Jinxiang Chai, Paul SA Reitsma, Jessica K Hodgins, and Nancy S
Pollard. 2002. Interactive control of avatars animated with human motion data.
In Proceedings of the 29th annual conference on Computer graphics and interactive
techniques. 491–500.

[10] F Landis Markley, Yang Cheng, John L Crassidis, and Yaakov Oshman. 2007.
Averaging quaternions. Journal of Guidance, Control, and Dynamics 30, 4 (2007),
1193–1197.

[11] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari
with Deep Reinforcement Learning. Neural Information Processing (2013).
arXiv:1312.5602 [cs.LG]

[12] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, , Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. nature 518, 7540
(2015), 529–533. https://doi.org/10.1038/nature14236

[13] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. 2018.
Deepmimic: Example-guided deep reinforcement learning of physics-based char-
acter skills. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–14.

https://doi.org/watch?v=z_wpgHFSWss&t=658s
https://arxiv.org/abs/1312.5602
https://doi.org/10.1038/nature14236


SIGGRAPH ’21 Courses, August 09-13, 2021, Virtual Event, USA Llobera, et al.

[14] Xue Bin Peng, Angjoo Kanazawa, Jitendra Malik, Pieter Abbeel, and Sergey
Levine. 2018. Sfv: Reinforcement learning of physical skills from videos. ACM
Transactions On Graphics (TOG) 37, 6 (2018), 1–14.

[15] Alexander Shoulson, Nathan Marshak, Mubbasir Kapadia, and Norman I Badler.
2013. Adapt: the agent developmentand prototyping testbed. IEEE Transactions
on Visualization and Computer Graphics 20, 7 (2013), 1035–1047.

[16] Sebastian Starke, Norman Hendrich, and Jianwei Zhang. 2018. Memetic evolu-
tion for generic full-body inverse kinematics in robotics and animation. IEEE
Transactions on Evolutionary Computation 23, 3 (2018), 406–420.

[17] Sebastian Starke, Yiwei Zhao, Taku Komura, and Kazi Zaman. 2020. Local motion
phases for learning multi-contact character movements. ACM Transactions on
Graphics (TOG) 39, 4 (2020), 54–1.

[18] Tingwu Wang, Yunrong Guo, Maria Shugrina, and Sanja Fidler. 2020.
UniCon: Universal Neural Controller For Physics-based Character Motion.
arXiv:2011.15119 [cs.GR]

A ONLINE RESOURCES TO GET STARTED
A.1 Physics-based learning
Several work discussed in this course is available online open source,
mostly with a non-commercial license. This allows the interested
part to explore how the techniques described in the literature are

actually used. An example of this is Deep Mimic, which shows the
methods used for Peng’s 2018 SIGGRAPH Article [13].

However, this kind of results are difficult to translate to a pro-
duction environment, mainly due to the fact that they are not in
one of the main game engines used in video game production. A
possible solution for this challenge is the Marathon Environments3

project, which allows anyone interested in physics-based learning
to try different algorithms for deep reinforcement learning using
an accessible game engine like Unity3D.

A.2 Innovative Controllers
Starke has made available open source and free for research purpose
some of the controllers discussed in this course 4

We have also successfully combined Marathon Environments
with a proprietary implemnentation of Motion Matching that is
available at a modest price5.
3https://github.com/joanllobera/marathon-envs/
4https://github.com/sebastianstarke/AI4Animation
5https://assetstore.unity.com/packages/tools/animation/motion-matching-for-unity-
145624

https://arxiv.org/abs/2011.15119
https://xbpeng.github.io/projects/DeepMimic/index.html
https://github.com/joanllobera/marathon-envs/
https://github.com/sebastianstarke/AI4Animation
https://github.com/sebastianstarke/AI4Animation

	Abstract
	1 Course Overview
	2 Course Content
	3 About the instructor
	4 Acknowledgments
	References
	A Online Resources to get started
	A.1 Physics-based learning
	A.2 Innovative Controllers


