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ABSTRACT We introduce HUMAN4D, a large and multimodal 4D dataset that contains a variety of
human activities simultaneously captured by a professional marker-based MoCap, a volumetric capture and
an audio recording system. By capturing 2 female and 2 male professional actors performing various full-
body movements and expressions, HUMAN4D provides a diverse set of motions and poses encountered as
part of single- and multi-person daily, physical and social activities (jumping, dancing, etc.), along with
multi-RGBD (mRGBD), volumetric and audio data. Despite the existence of multi-view color datasets
captured with the use of hardware (HW) synchronization, to the best of our knowledge, HUMAN4D is
the first and only public resource that provides volumetric depth maps with high synchronization precision
due to the use of intra- and inter-sensor HW-SYNC. Moreover, a spatio-temporally aligned scanned
and rigged 3D character complements HUMAN4D to enable joint research on time-varying and high-
quality dynamic meshes. We provide evaluation baselines by benchmarking HUMAN4D with state-of-the-
art human pose estimation and 3D compression methods. We apply OpenPose and AlphaPose reaching
70.02% and 82.95% mAPPCKh-0.5 on single- and 68.48% and 73.94% mAPPCKh-0.5 on two-person 2D pose
estimation, respectively. In 3D pose, a recent multi-view approach named Learnable Triangulation, achieves
80.26% mAPPCK3D-10cm. For 3D compression, we benchmark Draco, Corto and CWIPC open-source 3D
codecs, respecting online encoding and steady bit-rates between 7-155 and 2-90 Mbps for mesh- and point-
based volumetric video, respectively. Qualitative and quantitative visual comparison between mesh-based
volumetric data reconstructed in different qualities and captured RGB, showcases the available options
with respect to 4D representations. HUMAN4D is introduced to enable joint research on spatio-temporally
aligned pose, volumetric, mRGBD and audio data cues. The dataset and its code are available online.

INDEX TERMS Dataset, 4D, Multi-View, Motion Capture, RGBD, Volumetric Video, Pose Estimation,
3D Compression, 4D Capture, Visual Evaluation, Benchmarking, Depth Sensing, Audio, Social Activities

I. INTRODUCTION

Inhabitance in a 4D world of moving 3D objects of various
shapes and colors increases the need to capture and exten-
sively study, analyze and exploit the 4D data around us,

especially now, with the massive development of low-cost
sensing devices [1]. Nowadays, volumetric video of humans,
captured with the aid of multiple cameras, and scanned 3D
characters, animated with the use of motion capture (MoCap)
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technologies, comprise the core elements for human-centric
4D media production, a domain essential in several techno-
logical and industrial sectors.

On the one hand, these technologies constitute key ele-
ments in immersive experiences that provide remote virtual
presence and co-presence (e.g. XR conferencing [2], XR
museums [3], etc.). The experiences are further enhanced by
augmenting the virtual and immersive worlds with photore-
alistic representations that enable highly natural and realistic
audiovisual communication between multiple users.

On the other hand, dense 4D data cues produced with
such technologies contain space-time coherent information
of shape, motion, and appearance of people, attracting the
interest of the computer vision research community and
beyond. Several research works [4], [5] provide large corpora
with synthetic humans generated based on human body priors
[6], motion capture data and more. By applying 3D surface
reconstruction methods [7]–[14] on 3D or 4D data captured
with single or multiple spatio-temporally aligned RGBD
sensors, volumetric video is reconstructed in either real-time
or offline. Fusing volumetric video with high quality 3D
scans and motion capture enables the study and development
of data-driven approaches across several domains, such as
2D human pose estimation [15]–[19], 3D pose estimation
[20]–[26], motion analysis [27], [28], 3D/4D volumetric re-
construction [7]–[13], [29], performance capture [30], [31],
volumetric video compression [32]–[36], photorealistic rep-
resentations [14] and more.

The advancement of shape and motion computer vision
techniques, the development of immersive media technolo-
gies, as well as the interest of the industry in human-centric
4D media production, highly and rapidly increase the need
for large, high-quality datasets that will act as cornerstones
for their continuous development, also enabling their joint
evolution. Nevertheless, at the moment, only few datasets are
partially focused on some of the aspects of these challenging
tasks.

On top of that, several computer vision methods approach
3D/4D research tasks from monocular or HW-SYNCed
multi-view color (i.e. 2D) streams. However, by definition,
2D data cannot cope with the intricacies of 3D/4D shape or
form, at least to the extent that the volumetric data can. That
is probably due to the lack of HW-SYNCed depth/volumetric
data from public resources. For instance, the lack of HW-
SYNCed volumetric data along with ground-truth 3D poses
for supervision eliminates the attempts for data-driven 3D
pose estimation approaches from volumetric data.

To this end, we create HUMAN4D, a dataset that fills
these gaps by providing professional motion capture along
with volumetric data captured in 3D character and mesh- and
point-based volumetric representations. In particular:
• We introduce a publicly available 4D dataset containing

a large corpus of annotated spatio-temporally aligned
multi-view RGBD (mRGBD), volumetric and motion
capture data, in order to enable extensive research on
several computer vision and graphics topics.

• To the best of our knowledge, HUMAN4D is the first
dataset that provides HW-SYNCed mRGBD frames
along with marker-based motion capture and audio data
cues, with the use of recent consumer-grade depth sens-
ing devices, cutting-edge optical motion capture tech-
nologies and body-worn audio recording, respectively.

• We provide pose estimation baselines by applying data-
driven 2D and 3D pose estimation algorithms on single-
and multi-view data sequences, along with insights with
respect to the advantages of HUMAN4D for training
such methods.

• We perform and report a detailed study on volumetric
data compression using 3D codecs, examining the rate
distortion from several perspectives, while respecting
online volumetric video encoding and steady bit-rates.

• We conduct and report objective visual quality evalu-
ation on various volumetric representations, i.e. mesh-
based volumetric data evaluation across various recon-
struction qualities.

The remainder of this paper is organized as follows: Sec.
II overviews related datasets including 4D data in a similar
aspect; Sec. III describes in detail the HUMAN4D dataset,
giving evidence with respect to its creation and statistics;
Sec. IV benchmarks 2D and 3D pose estimation data-driven
models on HUMAN4D; while Sec. V benchmarks 3D codecs
and compares mesh-based 4D representations with respect to
visual quality using well-known objective metrics; in Sec.
VI, we discuss the impact of this dataset to the research
community and beyond; finally, Sec. VII concludes the paper
and discusses future work.

II. RELATED WORK
Over the past few decades, the computer vision research com-
munity has showed an increased interest for virtual human
related technologies. A variety of traditional and learning-
based computer vision methods are targeting open research
problems using motion, volumetric, image and action-based
data. In this section, we discuss relevant datasets [37]–[42],
providing details and explaining the nature of the data they
offer to the research community. A brief overview of these
datasets follows, while Table 1 summarizes their features and
modalities.
MHAD [37]: One of the first publicly available datasets
offering MoCap and RGBD data is (Berkeley) MHAD. The
MHAD dataset contains spatio-temporally aligned data cues
captured with a professional MoCap system with active
markers [43] along with 12 RGB and 2 MS Kinect v2
(RGBD) cameras, 6 wearable inertial sensors (accelerome-
ters only) and 4 microphones, recording the audio signals
during the performance of the actions. The dataset consists of
659 data sequences from 11 human actions performed by 12
subjects. Although MHAD enables research on multi-view
pose estimation and beyond, the MS Kinect v2 devices are
only 2 and not HW-SYNCed, resulting in the existence of
spatio-temporal offsets between the deprojected depth maps
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MHAD(2013) [37] Human3.6M(2014) [38] CMUPanoptic(2015) [39] HUMBI(2018) [40] HUMAN4D(2020)

Body Pose 3 3 3 3 3
Marker-based MoCap 3 3 7 7 3
Body Part Segments 7 7 7 3 7
Multi-view RGB 3 3 3 3 3
Multi-view Depth 3 7 3 7 3
3D Meshes 7 7 7 3 3
Point-clouds 7 7 3 7 3
Audio Cues 3 7 7 7 3
Gaze Features 7 7 7 3 7
Hand Features 7 7 3 3 7
Facial Features 7 7 3 3 7
Rigged Characters 7 3 7 7 3
Multi-person 7 7 3 7 3

TABLE 1: Summary of state-of-the-art datasets and HUMAN4D with respect to the available features and modalities.

(point-clouds) and the 3D poses of the MoCap, limiting that
way the joint use of 3D pose and volumetric data.
Human3.6M [38]: Human3.6M (H36M) contains a huge
corpus with 3.6 million 3D human poses of 5 female and 6
male subjects. Similarly to HUMAN4D, the subjects perform
a set of motions and poses (captured with 10 motion capture
cameras) from daily human activities (taking photos, talking
on the phone, eating, sitting, etc.), along with synchronized
color images from 4 synchronized color cameras, depth maps
from 1 single Time-of-Flight (ToF) depth sensor and accurate
3D body scans of the subject actors involved. H36M consti-
tutes one of the most widely used datasets for human-centric
computer vision research tasks, however, there still exist
some drawbacks. Only the color cameras support hardware
inter-synchronization, there is only one depth sensor with
low depth map resolution, while the set of motion capture
cameras is limited (10) in comparison with HUMAN4D
(24). Finally, the recent human-centric research advances and
efforts are focused on multi-person captures (e.g. including
social activities) similar to ones provided by HUMAN4D and
other datasets [39], [40], contrary to H36M which contains
only single-person sequences.
CMUPanoptic [39]: CMUPanoptic (CMU) is the largest
public dataset in terms of the number of camera views (521),
capturing natural interactions of up to 8 subjects performing
social activities with uncontrolled behaviour and appearance.
The dataset has been captured using the Panoptic Studio
[39], a massively multi-view capture system consisting of
480 VGA, 31 HD and 10 RGBD (Kinect v2) cameras,
distributed over the surface of a geodesic sphere. Beyond
body poses, CMU also contains 3D facial landmarks and
2D/3D hand pose data cues. Even though CMU currently
constitutes one of the richest publicly available datasets in
the field, HUMAN4D enables further research perspectives.
Despite its spatio-temporal setting, CMU does not provide
HW volumetric synchronization since the time alignment
between the Kinect v2 RGBD streams is achieved through
a hardware modification using the microphone array of each
device, incapable to provide synchronization precision com-
parable to HUMAN4D (see Sec. III-B1). Finally, the pose es-
timates have not been captured using a professional marker-
based motion capture solution as in HUMAN4D; instead, an

accurate marker-less approach has been used.
HUMBI [40]: Another large and publicly available multi-
view dataset is HUMBI, focusing on human body expres-
sions with natural clothing, aiming to facilitate modeling
of view-specific appearance and geometry of gaze, face,
hand, body, and garment from several and various people.
HUMBI complements the publicly available datasets with
respect to the number of camera views (107 synchronized
HD cameras) and subjects (772 distinctive subjects across
gender, ethnicity, age, and physical condition). The dataset
includes five elementary body expressions, i.e. gaze, face,
hand, body and garment. With the use of SMPL [6], HUMBI
provides mesh-based 3D geometry of the subjects along with
their respective texture atlases. For HUMBI, the use of depth
sensors was out of scope, thus multi-view depth sensing was
not considered.

HUMAN4D aims to tackle lacking areas of existing, pub-
licly available 4D datasets. HUMAN4D consists of a large
corpus of spatio-temporally aligned mRGBD, volumetric and
motion capture data cues, providing high synchronization
precision between the multiple RGBD streams exploiting the
HW-SYNC capabilities of the sensors. On top of that, HU-
MAN4D contains (social) activities between multiple sub-
jects (2), enabling research on challenging computer vision
tasks under the multi-person aspect (e.g. occlusions, multiple
person instances in the field of view, larger volumetric areas,
etc.). HUMAN4D is meant to provide the computer vision
research community with data that will enable the research
and development of novel approaches on intensively active
human-centric research domains. It is worth noting that the
consumer-grade depth sensing devices used for the RGBD
data capturing are commercially available in the market,
allowing the experimentation and development of computer
vision algorithms applicable even for production purposes.

III. HUMAN4D DATASET
A. 4D CAPTURING SETTING
The capturing of the dataset took place in a professional
motion capture studio (Artanim Foundation1) where, beyond
the motion capture system, special portable equipment for

1http://artanim.ch/
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FIGURE 1: Pictures taken during the preparation and capturing of the HUMAN4D dataset (in Artanim’s facilities). The room
is equipped with 24 Vicon MXT40S cameras rigidly placed on the walls, a portable volumetric capturing system with 4 Intel
RealSense D415 depth sensors temporarily set up to capture the RGBD data cues and wearable microphones for the actors.

volumetric capturing was set up, as depicted in Fig. 1. In
particular, 24 motion capture (MoCap) cameras along with 4
stereo-based depth sensors and microphones using HW and
software (SW) synchronization (see Sec. III-C1 for details)
were used, to capture the whole dataset. All 24 motion
capture cameras were rigged on the walls, to maximize the ef-
fective experimentation volume. The high number of motion
cameras (24) increases the accuracy of the motion capture
due to the elimination of occlusions, providing that way
high precision ground-truth poses for the dataset. The actual
capturing space was set in an area of approximately 4m×4m
so that the bodies of the actors were at least partially in the
field-of-view of the RGBD cameras during the performances.
These cameras were placed at the 4 corners of the stage in a
cross schema. The floor-plan of the whole capturing setup is
illustrated in Fig. 2. Finally, a 3D body scanner was used to
obtain an accurate 3D mesh-based volumetric model of one
of the actors.

B. DATASET CREATION
For the creation of the dataset, 4 professional actors, 2 female
and 2 male were recruited, in order to pursue the highest
possible quality of the captured actions, with respect to
the authenticity of the performances. Within HUMAN4D,
without the post-processing products (i.e. volumetric data),
we captured and introduce the following:

• Multimodal data of 14 single-person and 5 two-person
actions (19 in total), including physical exercises, daily
and social activities, totalling 56 single-person and 10
two-person sequences, respectively. In Table 2, details
with respect to HUMAN4D activities are figured.

• Projection matrices and external calibration camera pa-
rameters retrieved using an anchor-based calibration
method to reduce pairwise accumulating errors, en-

FIGURE 2: Capturing space floor-plan showing the poses
of 24 Vicon MXT40S cameras and 4 Intel RealSense D415
sensors.

abling 2D projection of 4D data to the various camera
views and vice versa.

• 30 audio cues for some of the activities where the
actors had to talk and act based on specific scripts and
scenarios (see Table 2).

• Synchronization between the modalities by providing
timestamped data.

• 1 scanned and rigged 3D model of one of the profes-
sional actors.

• A set of benchmarks to facilitate comprehensive eval-
uation of 2D and 3D pose estimation methods, along
with evaluation of volumetric video production and
compression quality.

Following, we describe in detail the modalities we used
and the techniques we applied to capture and create the
dataset.
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FIGURE 3: HW-SYNCed multi-view RGBD samples (4 RGBD frames each) from "stretching_n_talking" (top) and "basket-
ball_dribbling" (bottom) activities. The depth maps are colorized using TURBO colormap [44].

TABLE 2: Details with respect to HUMAN4D physical, daily
and social activities.

activity # frames audio type

Si
ng

le
-p

er
so

n

running 2,050 7 physical
jumping_jack 1,974 7 physical
bending 2,156 7 physical
punching_n_kicking 2,079 7 physical
basketball_dribbling 2,124 7 physical
laying_down 4,082 7 physical
sitting_down 3,288 7 daily
sitting_on_a_chair 2,797 7 daily
talking 2,377 X daily
object_dropping_n_picking 1,768 7 daily
stretching_n_talking 2,787 X physical
talking_n_walking 2,889 X daily
watching_scary_movie 2,194 X daily
in-flight_safety_announcement 6,192 X daily

M
ul

ti-
pe

r s
on watching_football_together 1,760 X social

dancing_together 1,356 X social
physical_examination 2,328 X social
whispering 3,045 X social
card_trick 3,060 X social

50,306

1) SPATIO-TEMPORALLY ALIGNED mRGBD CAPTURE

To the best of our knowledge, HUMAN4D is the first publicly
available dataset that offers HW synchronized multi-view
RGBD data captured in a real-time manner. Most of the
existing datasets use synchronized RGB cameras [38] or
previous versions of Microsoft Kinect for RGBD capturing
[39], which do not support HW triggering, requiring SW-
based soft synchronization solutions.

In HUMAN4D, we instead use the Intel RealSense D415
sensor which offers this functionality [45]. D415 sensors

can be configured in either master or slave synchronization
mode, eliminating the need for external HW triggering when
connected in a device cluster. One device can be set as
"master", providing the synchronization signal, and the rest
as "slaves" that receive it and cohere. The impact of HW-
SYNCed mRGBD capture for volumetric- and pose-related
tasks is depicted in Fig. 6, where point-clouds extracted by
deprojecting mRGBD frames from HUMAN4D and CMU
[39] are compared, showcasing the improved temporal align-
ment of the HW-SYNCed HUMAN4D against CMU data.
It is worth noting that CMU constitutes currently the only
existing dataset that provides synchronized depth maps by
applying a HW modification on the Kinect v2 devices.

Regarding depth capturing, the sensors were used in "high
accuracy” mode, offering only the high confidence depth
estimates, therefore producing accurate but sparse depth data.
It is worth noting that we configured the sensors exploiting
their spatial filtering and exposure adjustment capabilities
to capture the best possible depth quality. We captured
the mRGBD data using the capturing system2 proposed by
Sterzentsenko et al. [46], while spatial alignment between
the sensors was achieved using the multi-sensor calibration
schema proposed by Papachristou et al. [47]. HW-SYNCed
mRGBD samples are depicted in Fig. 3.

2) 3D SCANNED AND RIGGED CHARACTER
To obtain an animatable mesh, one of the actors was scanned
using a custom photogrammetry-based body scanning rig
(Fig. 4). The rig consisted of 96 Canon Powershot A1400
cameras controlled using SW-based on the Canon Hack

2https://github.com/VCL3D/VolumetricCapture
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FIGURE 4: Using a custom photogrammetry rig with 96
cameras, photos were taken of the actor (left) and recon-
structed into a 3D textured mesh using Agisoft Metashape
[48] (right).

Development Kit (CHDK) [49]. Lighting was provided by
LED strips mounted on the rig. All cameras were triggered
in a synchronized manner. To aid the photogrammetric re-
construction of the bodyscan, the dark MoCap suit worn
by the actor was temporarily augmented with colored paper
markers, which were removed before the MoCap process.

Using a commercial photogrammetry SW tool, Agisoft
Metashape [48], the individual photos were aligned to recon-
struct a textured 3D mesh. After the cleanup of mesh artifacts
from the reconstruction process, the mesh was rigged and
skinned for animation, using a standard full-body humanoid
skeleton created by a professional 3D animator.

3) OPTICAL MARKER-BASED MOTION CAPTURE
To obtain reference animation of the 4 actors performing the
various activities, a professional motion capture setup was
used. The setup consisted of 24 Vicon MXT40S cameras
(Vicon, Oxford Metrics, UK) sampling at 120Hz. Each actor
wore a dedicated motion capture suit with 53 attached retro-
reflective markers. This dense marker set along with the high
number of motion cameras (24) allowed us to capture highly
accurate and precise MoCap data to serve as ground-truth for
training, supervising and evaluating data-driven approaches
and beyond.

For the purpose of subject calibration, each actor was
asked to perform a full range of motion of all joints. The pro-
cedure ensured that the joint locations were correctly mapped
to the set of the tracked markers. Before each activity, the
actors were asked to start in a T-pose and then proceed to
their assigned activity.

The captured animations of the actor whose body was
subsequently scanned, underwent a retargeting process by a
professional 3D animator. The goal of this process was to

FIGURE 5: (Left) Initial MoCap skeleton structure mapped
to 3D and 2D pose joint indices. (Right) Animations for the
scanned actor were re-targeted to match the skeleton rig of
the 3D model.

adjust the recorded animations to where slight differences
between the captured MoCap skeleton structure and the one
of the rigged 3D model exist, as illustrated in Fig. 5 (Right).

4) AUDIO RECORDING
The use of audio and its fusion with visual data have shown
significant results in various research tasks such as human
emotion recognition [50], scene analysis [51], human activity
recognition [52] and more. To this end, also targeting the
capture of social activities, we recorded audio during the
performance of some of the actions. In particular, 30 of the
activities (see Table 2) include audio either as a monologue
(single-person) or conversation between two subjects, based
on the related scripts and scenarios. For this purpose, wireless
body-worn microphones were used to record the audio cues.
The audio recording was performed at the frequency of 48
kHz.

C. DATASET PROCESSING AND ANNOTATIONS
1) SYNCHRONIZATION AND CALIBRATION
Inter- and intra-modality synchronization is a prerequisite
for such datasets. The motion capture cameras operate in
inter-camera synchronization by default. With respect to the
mRGBD capturing setting, as we already mentioned, Intel
RealSense D415 sensors offer intra- and inter-sensor HW
synchronization as well. With respect to the inter-modality
synchronization, considering the motion capture clock as ref-
erence for the full system, along with the mRGBD and audio
data timestamping, a SW-based synchronization technique
was applied to temporally align the data. In particular, given
the motion capture frequency equal to 120 Hz, the temporally
closest MoCap sample to every mRGBD frame timestamp

6 VOLUME 4, 2016
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FIGURE 6: Colored point-clouds from CMU [39] (Left) and HUMAN4D (Right) datasets showcase the benefits of HW-
SYNC. In CMU, where the Kinect devices are modified for synchronization purposes, the leg of the subject is corrupted in a
slow movement (i.e. slow leg lifting) due to the existence of temporal offsets between the devices. In HUMAN4D, the leg is
appropriately captured in a fast movement (i.e. punching and kicking).

FIGURE 7: Joint and marker 3D positions projected on color views with high accuracy. The marker projection accuracy which
is clearly visible on the color views showcases the precision of the spatio-temporal alignment between the 3D poses (MoCap)
and the RGBD data.

was considered the matching pose, giving a low temporal
difference td, where td ≤ 1

120/2 ms =⇒ td ≤ 4.16 ms. The
initial temporal offset between the modalities was detected
with the use of a marker-equipped (2 markers) clapperboard
at the beginning of each sequence, enabling all the modal-
ities to capture the time instance of the clapping event. In
detail, for the motion capture data sequences, the 3D position
signals of the clapperboard markers were analyzed to detect
the clap event by identifying the time instance when the
euclidean distance between the markers is the minimum; for
the audio signals, the clap event caused an easily detectable
peak on the amplitude of the audio signals, while for the
RGBD data, the event was manually detected.

For the spatial alignment of the modalities, the MoCap
system was calibrated once before the captures, while the
mRGBD system was calibrated per subject (every subject
performed all the actions at once). The spatial alignment
between MoCap and mRGBD was achieved by applying a

semi-automatic technique, capturing short sequences of mov-
ing retro-reflective markers using both modalities before the
capturing of each subject. For these sequences, the infrared
(IR) stream of the sensors was enabled instead of the color.
The details of the inter-modality spatial calibration go beyond
the scope of this paper.

2) 2D AND 3D POSE FROM MOTION CAPTURE
The spatio-temporal alignment between the modalities and
the highly frequent and precise 3D motion capture enable the
extraction of 3D poses accurately mapped on the RGBD data
cues. With a set of J = 33 j-joints, as depicted in Fig. 5, a
3D pose per frame f and skeleton s is mapped to every single
mRGBD frame. Then, by applying inverse transformation
per camera pose and projecting the 3D positions of the joints
on the RGBD views, the 2D keypoints K are calculated by:

K(f, s, j) = π(Tg→l(xf,s,j),Ks), (1)

VOLUME 4, 2016 7
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FIGURE 8: 2D pose and bounding box annotations illustrated on various color and depth frames. The rows depict the 4 different
views of mRGBD frames both from single- and two-person activities.

where xf,s,j ∈ R3 is the 3D position of joint j, Tg→l is
the transformation from the global (g) coordinate system
to the local (l) one of sensor s with the arrow showing
the direction of the transformation. π denotes the projection
function that transforms the 3D coordinates to pixels, using
sensor’s intrinsic parameters matrix Ks. The 2D outcomes of
this processing are depicted in Fig. 7 and 8 .

Furthermore, considering the MoCap marker 3D positions
and their corresponding 2D projections on the sensor views
(using the projection of Eq. (1)), we extract the 3D and
2D bounding boxes containing each subject per frame, by
fitting a rectangular slightly padded (2% of the dimension
size per side) prism and box around the 3D positions and 2D
projections, respectively.

3) VOLUMETRIC DATA FROM MULTI-VIEW RGBD
Real-time 4D reconstruction evolves as a cutting-edge com-
ponent in XR applications and beyond, especially focused on
challenging dynamic data such as rigid and non-rigid human
motions. Key concept of this dataset is the exploitation of
the mRGBD cues of human activities to produce and dispose
volumetric data captured in a real-time manner, in the form of
colored point-cloud and colored/textured 3D mesh instances
for every single mRGBD frame.
Point-cloud: An RGBD image is composed of a color im-
age I and a depth image D, which, after the application
of a local transformation between them, are registered to
the same coordinate frame. Then, given the depth sensors
poses (Tv :=

[
Rv tv
0 1

]
) known in a common coordinate
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FIGURE 9: Merged reconstructed point-cloud from one single mRGBD frame from various views.

FIGURE 10: Reconstructed [8] mesh-based volumetric data with (Left) color per vertex visualization in 3 voxel-grid
resolutions, i.e. r = 5, r = 6 and r = 7 and (Right) textured 3D mesh sample in voxel-grid resolution for r = 6.

system, where Rs and ts denote rotation and translation,
respectively, we transform every depth pixel p, p ∈ Ds, from
the depth image domain coordinates of each view to a global
coordinate system by:

Tl→g(p) = Tl→gπ
−1(Ds(p),Ks, p), (2)

where Tl→g is the relative pose from the local (l) coordinate
system of sensor s to the global (g) one with the arrow
showing the direction of the transformation. π−1 denotes
the deprojection function that transforms the pixel to 3D
coordinates, using sensor’s intrinsic parameters matrix Ks.
Merging the transformed partial point clouds from each view
to the global space, results in the colored point cloud data.
The outcome of this process is illustrated in Fig. 9.
3D Mesh: Beyond point-based volumetric data, watertight
colored and textured 3D mesh instances are reconstructed
in a real-time manner (up to the frequency of the sensor
acquisition, i.e. 30 fps) applying the GPU-based implemen-
tation proposed by Alexiadis et al. [8], based on the fast
Fourier Transform (FFT) -based approach proposed by Kazh-

dan [53]. The 3D geometry reconstruction relies on a scalar
volume function V (q) containing the splatted 3D surface
information, as given by the point cloud calculated using the
depth maps, defined over a 3D grid q = [qX ; qY ; qZ ]T ∈
{1, ..., NX} × {1, ..., NY } × {1, ..., NZ}, inside the fore-
ground object’s bounding box. This 3D grid of V (q) is con-
sidered the volume resolution of the 3D reconstruction, used
with power of 2 components for FFT, i.e. 2r×2r+1×2r, r ∈
N. Applying then the marching cubes algorithm [54], the 3D
surface is extracted in the form of triangular meshes (vertex
positions, normal vectors and connectivity). The coloring
and texturing of each triangle of the surface is based on a
weighted average between the cameras for which the specific
part is not occluded. The weights estimation depends on the
visibility angle between the camera and the respective area.
Applying [8] in voxel grid resolutions with r = 5, r = 6,
r = 7, we extract textured and colored triangular 3D mesh
instances for all the mRGBD frames of the dataset in three (3)
different resolutions. Color-per-vertex and textured 3D mesh
instances are depicted in Fig. 10.
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FIGURE 11: Overview of the benchmarking schema, given the spatio-temporally aligned mRGBD frames and ground-truth
poses. Single-view RGB images are fed for 2D pose estimation. Multi-view RGB data are used for multi-view 3D pose
estimation. Multi-RGBD frames are processed to produce point- and mesh-based volumetric video for 3D compression and
visual quality benchmarking.

D. HUMAN4D BENCHMARKING SUBSETS
For benchmarking on HUMAN4D, we divide the dataset
into two subsets, a single- (H4D1) and a two-person one
(H4D2), in order to reduce the amount of data processing,
as well as to evaluate samples that represent varying human
poses. At the beginning of each sequence, the subjects were
standing in T-Pose for calibration purposes. To that end, we
decided to remove the first 100 frames of each sequence
to avoid the collection of many similar poses (T-Pose) and
to randomly sample 100 frames from the remaining part of
each sequence, totaling 5600 and 1000 single-person and
multi-person frames, respectively. Given that we benchmark
HUMAN4D with pre-trained models or non data-driven en-
coders, both subsets, H4D1 and H4D2, are used as testing
sets. The rest of the data can be considered as training and
validation sets to allow the experimentation and develop-
ment of new data-driven approaches on HUMAN4D. We
benchmark HUMAN4D with respect to pose estimation and
volumetric video compression by applying state-of-the-art
approaches of the respective fields. In the following sections
(Sec. IV and V), we evaluate pre-trained models as well as 3D
codecs for pose estimation and 3D compression respectively,
on the benchmarking subsets of the dataset. An overview
of the benchmarking flow and methodology we follow and
present in the following sections is depicted in Fig. 11.

IV. POSE ESTIMATION
HUMAN4D enables research to human pose-related com-
puter vision tasks by providing spatio-temporally aligned

RGBD data from multiple views under a HW-SYNC setting,
along with accurate 3D and 2D poses. Recent research efforts
are devoted on various single- and multi-person pose esti-
mation approaches, from single RGB in the wild [18], [57]–
[59], depth [60], [61], multi-view RGB [23], [62] and multi-
view RGBD [22], [63], among others. However, the selection
criteria of the methods we benchmark are to be open-source
and applicable to HUMAN4D, producing baseline results
for our dataset. Finally, it is worth noting that the mRGBD
frames of the evaluation set that go beyond the capabilities of
the pre-trained models (for instance, several body parts out
of at least one of the views) are excluded, preventing wrong
and unfair evaluation with respect to the effectiveness of the
methods.

A. SINGLE-VIEW 2D POSE ESTIMATION

Considering the 2D poses per view, we assess state-of-the-art
methods for 2D pose estimation from color images. We apply
the methods on the color views of all (4) RGBD cameras,
extracting the overall error metrics per mRGB frame by
averaging the errors per view.
Methods. We select 2 widely known 2D pose estimation
methods, a bottom-up and a top-down one, to assess their
effectiveness on HUMAN4D color images. Firstly, we select
OpenPose by Cao et al. [21], a deep bottom-up pose estima-
tion method that combines confidence maps with part affinity
fields to predict multi-person 2D poses in real-time. For the
evaluation of HUMAN4D, we used the latest version of the
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TABLE 3: 2D pose estimation results of OpenPose [21] and AlphaPose [55] with APPCKh-0.5.

mAP (%) MPII [42] COCO [56] H4D1 H4D2

Cao et al. OpenPose [21] 72.50 64.20 70.02 68.48
Fang et al. AlphaPose [55] 82.10 71.00 82.95 73.94

method as found to the official code repository3. Secondly,
we evaluate AlphaPose, another data-driven approach pro-
posed by Fang et al. [55]. AlphaPose constitutes a top-down,
real-time 2D pose estimation method, that is continuously
supported and updated over the last years. For the present
experiments, we used the latest version of the method as
found on the official repository of the authors4.

Finally, we also experimented with the official code of
VNect5, by Mehta et al. [20], one of the first data-driven
methods that approached 3D pose estimation from single
RGB images, and A2j6, by Xiong et al. [60], for 3D pose
estimation from single depth maps. However, the methods
were not favorably applicable to our dataset, probably due
to the differences between the characteristics of the training
sets used to train the models and HUMAN4D. For A2j
for instance, the depth data used to train the body pose
estimation model have been captured with Asus Xtion PRO,
a structured-light depth sensor that provides depth maps of
different resolution and depth noise in comparison with the
stereo-based depth sensor from Intel, Intel RealSense D415.
To this end, the results are not presentable, however the
related tools for experimentation are available in the code
repository of our dataset7.
Metrics. To measure the body joints localization accuracy,
we measure mean Average Precision (mAP) for the common
joints between the 2 methods and the ground truth annota-
tions considering the Percentage of Correct Keypoints-head
(PCKh) metric, as defined in [64]. PCKh constitutes a slight
modification of Percentage of Correct Keypoints (PCK) [65],
defining a matching threshold α as the percentage of the
head segment length (from neck to head top), instead of the
long edge of the bounding box that contains the subject,
aiming to make the metric independent from specific body
posture and articulation. To this end, a prediction for a frame
f and a skeleton s is considered correct if its euclidean 2D
distance error εf,s falls within a pixel circular region around
the ground-truth keypoint with radius r = αLhead, i.e.:

PCKh(f, s, j) =

{
1, εf,s(j) ≤ αLhead
0, εf,s(j) > αLhead

(3)

3https://github.com/CMU-Perceptual-Computing-Lab/openpose/tree/
b5bffe18a8021f5f3ed98f19441b658647d9a8c3

4https://github.com/MVIG-SJTU/AlphaPose/tree/
a22d3d6047b05be6ed94567c520d2a20d28d0407

5http://gvv.mpi-inf.mpg.de/projects/VNect
6https://github.com/zhangboshen/A2J/tree/

60b45312c5009b2053d014510c08806c2c91e950
7https://github.com/tofis/human4d_dataset

APPCKh(f, s) =
1

Js

Js∑
j=1

PCKh(f, s, j) (4)

where Lhead is the length of the head segment and α is
the scalar that controls the relative threshold for correctness
consideration.
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FIGURE 12: OpenPose [21] and AlphaPose [55] applied on
the 4 views of the RGBD cameras on H4D1 and H4D2,
extracting the overall error metrics per mRGB frame by
averaging the errors per joint.

Results. We separately present the results of the methods on
H4D1 and H4D2 to better distinguish their effectiveness on
single- and multi-person color data. At first, similarly to the
outcomes on other public datasets, AlphaPose outperforms
OpenPose showing higher accuracy both in single- and multi-
person benchmarking sets of HUMAND. Nevertheless, even
though both methods showcase lower accuracy on the multi-
person data of H4D2, which is much more challenging due
to the occlusions between the subjects, it is worth noting that
the difference between the single- and multi-person results
of OpenPose is low (∼ 1.5%), while AlphaPose presents a
higher drop of approximately 9%. Taking into account that
the distance between the subjects and the sensors is short,
from 1 to 2 meters, and in most of the two-person samples,
there are severe occlusions for some of the sensors, we can
probably assume that OpenPose, as a bottom-up approach
behaves more robustly on occlusions, however AlphaPose,
as a top-down approach, is more accurate but is strongly
affected by occlusions. In order to provide extra information
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TABLE 4: Single-person pose estimation results on H4D1 and CMU [39].

Datasets CMU HUMAN4D (H4D1)

Metrics MPJP (cm) MPJP (cm) RMSPJP (cm) mAP (PCKα3D = 10cm) mAP (PCKα3D = 12.5cm)

Iskakov et. al LT (alg.) [23] 2.13 8.42 9.56 80.26% 86.52%

FIGURE 13: Qualitative results of learnable triangulation (alg.) proposed by Iskakov et al. [23]. The top and bottom rows
depict success and failure cases, respectively. Blue and red colors correspond to ground truth and predicted poses.

to the reader, along with the results on HUMAN4D, we
also indicate the related outcomes of the methods to other
datasets, i.e. MPII [42] and COCO [56] using PCKh with
α = 0.5, as presented in Table 3. Finally, a plot depicting the
correlation between PCKh mAP against α threshold for both
methods on both subsets, is illustrated in Fig. 12.

B. MULTI-VIEW 3D POSE ESTIMATION

Subsequently, we evaluate multi-view 3D pose estimation on
HUMAN4D, exploiting the multi-view color images along
with the respective intrinsic and extrinsic camera parameters
and using HUMAN4D 3D poses as ground truth.
Methods. We choose a recent state-of-the-art method pro-
posed by Iskakov et al. [23], which constitutes a novel solu-
tion for multi-view single-person 3D human pose estimation
based on a learnable triangulation (LT) technique, combining
3D information from multiple spatio-temporally aligned 2D
color views. In particular, LT(alg.) [23] is a top-down 3D pose
estimation method based on end-to-end differentiable alge-

braic triangulation with an addition of confidence weights
estimated from the input images. We ran the experiments
only on the HD41 benchmarking subset of the dataset since
the method estimates single-person 3D poses, using the latest
version of the code published by the authors8.
Metrics. With respect to the metrics, we use the Mean Per
Joint Position (MPJP) [20] and Root Mean Squared Per Joint
Position (RMSPJP) error metrics, which both are influenced
by large outliers, however the latter better incorporates the
variance of the estimates and their bias. For a frame f and a
skeleton s, MPJP and RMSPJP are computed as:

εf,s(j) = ||x̂f,s(j)− xf,s(j))||2 (5)

EMPJP (f, s) =
1

Js

Js∑
j=1

εf,s(j) (6)

8https://github.com/karfly/learnable-triangulation-pytorch
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ERMSPJP (f, s) =

√√√√ 1

Js

Js∑
j=1

ε2f,s(j) (7)

where Js is the total number of joints of skeleton s. Fi-
nally, we also use mean AP with 3D PCK metric [66] per
joint, where an estimate is considered correct when the 3D
euclidean distance error, i.e. εf,s(j), is less than a distance
threshold α3D, as:

PCK3D(f, s, j) =

{
1, εf,s(j) ≤ α3D

0, εf,s(j) > α3D
(8)

APPCK3D
(f, s) =

1

Js

Js∑
j=1

PCK3D(f, s, j) (9)

for a frame f and skeleton s, correspondingly.
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FIGURE 14: Benchmarking of Algebraic Learnable Triangu-
lation [23] on H4D1 using total 3D PCK results in different
α3D threshold values in cm.

Results. Classic triangulation algorithms assume that the 2D
point coordinates from each view equally contribute to the
triangulation 3D point coordinates estimation. The major
advantage of the LT approach is that the contribution of
the 2D joint positions that cannot be estimated reliably (e.g.
due to joint occlusions) to the final triangulation outcome,
is controlled by a neural network. In particular, learnable
weights have been added to the coefficients of the matrix
corresponding to different views. A limitation of the LT
approach is that it fails when some of the body parts are
out of the field of view of the cameras, leading to erroneous
estimates. Another limitation is that LT approach supports
only single-person 3D pose estimation and for that reason it
was applied only on H4D1. Quantitative results of the method
on HUMAN4D, complemented with results on CMU [39]
dataset, are reported in Table 4. Fig. 14 illustrates the correla-
tion between the mAP against α3D threshold on HUMAN4D.
Qualitative results regarding the predicted 3D poses against
ground-truth on HUMAN4D are illustrated in Fig. 13, where
LT(alg.) seems accurate in "clean" poses where self-occlusions
are limited (success cases on top rows), while the accuracy is

limited in the presence of self-occlusions (failure cases on
bottom rows).

V. VOLUMETRIC VIDEO
Beyond pose estimation, we benchmark a set of state-of-
the-art static 3D codecs, in the context of a live streaming
scenario. Moreover, we assess the visual quality of textured
3D mesh instances to demonstrate the positive correlation
between the objective visual quality and the FFT voxel-grid
resolution.

A. VOLUMETRIC VIDEO COMPRESSION
Compression of volumetric data produced in a real-time
manner is thought to be a key enabler of a wide variety
of applications, such as XR teleconference, real-time dense
surface mapping in AR devices and free-viewpoint videos.
A key contribution of HUMAN4D is that it enables future
benchmarking in static and temporal volumetric video com-
pression, by offering a large dataset of samples and sequences
of point- and mesh-based volumetric data. In contrast with
motion pictures where solutions are mature and proven, real-
time varying geometry coding is still an open challenge
frequently cured utilizing only intra-frame coding, ignoring
temporal relations between volumes of consecutive frames.
Such an endeavour is presented in [67] by Doumanoglou et
al. In a similar manner, for the purpose of this work, the
codecs are tested in various profiles, aiming at specific bit-
rates, using appropriate metrics on HUMAN4D point- and
mesh-based volumetric data cues. To be coherent, we define
common codec profiles both for H4D1 and H4D2 dataset
subsets. A matching procedure between different codecs for
the same target bit-rate was adopted, defining the acceptable
deviation margin between target and achieved bit-rate to be
±10%.

1) MESH-BASED VOLUMETRIC VIDEO COMPRESSION
Initially, we benchmark 3D codecs on mesh-based volumet-
ric data using the benchmarking subsets of meshes recon-
structed in three different voxel-grid resolutions (i.e. r =
{5, 6, 7}) applying the real-time 3D reconstruction method
by Alexiadis et al., as reported in Section III-C3.
Codecs. We employ Corto [68] and Draco [69], two 3D
codecs particularly chosen due to their high quality real-
time performance. Targeting specific bit-rates for real-time
mesh-based volumetric video transmission, we constructed
a series of compression profiles with varying compression
level, quantization parameter per attribute and different com-
pression methods for specific attributes. HUMAN4D mesh-
based compression benchmarking focuses on three different
per-vertex attributes: geometry and normals represented in
floating points and color in unsigned integers.

Corto codec [68] configuration consists of four parameters.
One quantization value for each of the mesh attributes, i.e.
Geometry (GQ), Normal (NQ) and Color (CQ) Quantization
bits, and one switch to denote the normal prediction method.
We select between two different normal prediction methods,
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the Normals Quantized Coding (NQC) and the Normals
Delta Coding (NDC). In the former, we store the differences
between the normals estimated from the quantized geometry
and the quantized actual normals, using an octahedron pro-
jection representation [70]. In the latter, the quantized nor-
mals in the octahedron projection representation are solely
delta coded, with respect to a neighboring quantized normal
belonging to a quad incident to the normal’s vertex.

Regarding the Draco codec [69], the configurable pa-
rameters are the compression level (CL) which adjusts the
compression speed versus the size mixture, the geometry
quantization bits (GQ), the normals quantization (NQ) and
the color quantization bits (CQ). Contrary to Corto, Draco
does not expose any normal manipulation option to adjust.

Beyond these conventional open-source codecs, novel 3D
and 4D data compression approaches have appeared, such as
the one proposed by Tang et al. [36]. This method constitutes
a novel block-based 3D compression model, being the first
deep 3D compression method that can train end-to-end with
entropy coding, lossless compression of the surface topology,
exhibiting a novel block-based texture parametrization that
inherently promotes temporal consistency without tracking
and the necessity of the UV coordinates compression. This
codec achieves superior results in comparison to conven-
tional 3D codecs, such as Draco and Corto, in regards with
the rate-distortion (RD) balance. Specifically, it is deemed to
achieve on average 66% lower bit-rate for the same level of
distortion in 4D data. For the purpose of this work, we did
not benchmark this particular codec since it is not currently
open-source.
Metrics. With respect to the metrics, we use RMS, Hausdorf-
fAbs and HausdorffRel metrics to compare the compressed
and raw mesh-based representations. For the extraction of
RMS and Hausdorff distance, we exploit a tool implemented
based on [71]. This tool provides numerical metrics for
the similarity of source and target triangle or quadrilateral
meshes. It is worth mentioning that, for the same pair,
swapping between the source and target meshes can lead to
different numerical values, thus as usual for these metrics in
the literature, we define the correct value to be the maximum
of these two, for all metrics.

Hausdorff distance metric is used in two variations. Haus-
dorffAbs metric is defined as the maximum value of all the
uniformly minimum sampled distances across all points of
the source surface to the target surface. HausdorffRel metric
is a variation of HausdorffAbs metric which tackles the
comparison of surfaces with different scales. For the RMS
calculation, we need to have a set of minimum distances be-
tween two surfaces, the mean distance Em can be calculated
by:

Em(S, S′) =
1

|S|

∫
S

d(p, S′)dS (10)

where |S| denotes the area of S. Using the mean distance

formula, the root mean square error is defined by:

RMSS→S′ =

√
1

|S|

∫
S

d(p, S′)dS. (11)

Results. For a fair comparison between the codecs, we
choose to employ a testing scheme based on rate-distortion
terms. In that direction, we keep the bit-rates steady for the
pairs and evaluate the corresponding distortion introduced by
each codec. As it can be seen in Fig. 15, Draco consistently
outperforms Corto, in terms of distortion induced for any
tested bit-rate. The profiles used for the benchmarking are
depicted in Table 5.

Having tested the same codec profiles both for single and
multi-person subsets of the HUMAN4D dataset, we noticed
that the bit-rates achieved by both codecs on the multi-person
subset are slightly greater than those on the single-person
one. That is probably due to the fact that the additional
information induced in the form of the second subject, leads
to larger surfaces that, despite using the same voxel-grid
areas and resolutions, results in more challenging 3D surfaces
to compress, in regards with elements count and connectivity
information.

2) POINT-BASED VOLUMETRIC VIDEO COMPRESSION

To benchmark point cloud compression, beyond the recon-
struction of the raw point-cloud instances from the mRGBD
samples described in Section III-C3, we also use another
point-cloud reconstruction approach. The raw point-cloud
instances typically contain∼ 25, 000 points per frame for the
single-subject sequences and ∼ 40, 000 points for the two-
subject ones. This alternative reconstruction approach allows
us to create denser point clouds by sampling points from
the surface of the high resolution meshes (i.e. using voxel-
grid resolution with r = 7). Points are sampled from the
mesh surface with a probability proportional to the area of
the underlying mesh faces using Point Cloud Library (PCL)
[72]. We set the algorithm to generate point cloud instances
containing 300, 000 points per frame.
Codecs. To benchmark the performance of point cloud com-
pression, we perform a rate-distortion analysis for the codecs
Draco, Corto and CWIPC, the MPEG anchor codec proposed
in [33] and evaluated in [73]. CWIPC is parameterizable with
respect to the Octree Depth (OD) and JPEG Quantization
Parameter (JPEGQP). We select to perform the analysis on
4 target bit-rates. Note that, for all codecs we first identified
the compression parameters that achieve the target bit-rates
within a 10% tolerance. Details on these profiles are listed in
Table 6.
Metrics. To measure the distortions introduced by compres-
sion to the point-cloud samples, we used standard, well es-
tablished, full reference metrics, as released by the standards
body MPEG [74], [75]. More specifically, we measure Peak
Signal-to-Noise Ratio (PSNR) using the maximum of the
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FIGURE 15: 3D Mesh RMS, HausdorffAbs and HausdorffRel distortions vs target bit-rates on H4D1 and H4D2.

Voxel-Grid Resolution Target Bit-rate (Mbps) H4D1/2 Draco [69] Codec Configuration Corto [68] Codec Configuration

r = 5
7/8 (CL 6, GQ 8, NQ 8, CQ 5) (GQ 8, NQ 8, CQ 5, NQC)
10 (CL 4, GQ 10, NQ 10, CQ 5) (GQ 11, NQ 11, CQ 5, NQC)

r = 6

25/30 (CL 6, GQ 8, NQ 8, CQ 5) (GQ 9, NQ 9, CQ 5, NDC)
30/35 (CL 5, GQ 9, NQ 9, CQ 5) (GQ 10, NQ 10, CQ 5, NDC)
35/40 (CL 6, GQ 10, NQ 10, CQ 5) (GQ 11, NQ 11, CQ 5, NQC)
40/45 (CL 6, GQ 12, NQ 12, CQ 5) (GQ 13, NQ 13, CQ 5, NQC)

r = 7

90/100 (CL 2, GQ 7, NQ 7, CQ 5) (GQ 8, NQ 8, CQ 5, NDC)
105/115 (CL 2, GQ 8, NQ 8, CQ 5) (GQ 9, NQ 9, CQ 5, NDC)
120/130 (CL 4, GQ 9, NQ 9, CQ 5) (GQ 10, NQ 10, CQ 5, NDC)
135/155 (CL 5, GQ 10, NQ 10, CQ 5) (GQ 11, NQ 11, CQ 5, NQC)

TABLE 5: Draco [69] and Corto [68] Codec configurations used to achieve the targeted bit-rates for the voxel-grid resolutions
of the reconstruced 3D mesh instances, i.e. for r = 5, r = 6 and r = 7.
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FIGURE 16: Point-cloud PSNR Geometry and Color YUV distortions vs target bit-rates on H4D1 and H4D2.
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PC (R/S) Target Bit-rate (Mbps) CWIPC [33] Codec Configuration Draco [69] Codec Configuration Corto [68] Codec Configuration

R

2/3 (OD 6, JPEGQP 75) - -
4/7 (OD 7, JPEGQP 65) - -
7 (OD 8, JPEGQP 75) (CL 10, CQ 5, CQ 8) (GQ 10, CQ 6)

9/15 (OD 9, JPEGQP 65) (CL 10, CQ 6, CQ 8) (GQ 11, CQ 6)

S

4/8 (OD 7, JPEGQP 75) - -
15/25 (OD 8, JPEGQP 85) - -
40/50 (OD 9, JPEGQP 85) (CL 3, GQ 5, CQ 8) (GQ 10, CQ 6)
70/90 (OD 10, JPEGQP 85) (CL 10, GQ 8, CQ 8) (GQ 11, CQ 6)

TABLE 6: CWIPC [33], Draco [69] and Corto [68] Codec configurations used to achieve the targeted bit-rates for the
reconstructed (R) and sampled (S) point-clouds.

nearest neighbor euclidean distances amongst all points in
the reference point cloud as the peak value vp by:

PSNR = 10 log(
v2p

MSE
) (12)

The same process is then applied to the point cloud colors
at each of the corresponding points between the decoded and
the groundtruth point clouds. Metrics are collected utilizing
the MPEG PCC-DMETRIC tool [76]9 to calculate these
distortions for each frame in the dataset.
Results. Analyzing the experimental results, CWIPC codec
achieves lower geometry distortions for the same bit-rate in
comparison with Draco and Corto, while in higher bit-rates,
all the benchmarked codecs showcase similar efficiency.
CWIPC exploits octree occupancy to encode geometry po-
sitions, thus is able to retain more points from the original
point cloud. Details with respect to point-cloud compression
benchmarking are illustrated in Fig. 16, while the codec
profiles used for the experiments are listed in Table 6. For
the sake of clarity, we summarize the abbreviations of codec
configuration parameters in Table 7.

Codecs Parameter Abbreviation

Draco Compression Level CL
Draco/Corto Normal Quantization Bits NQ
Draco/Corto Geometry Quantization Bits GQ
Draco/Corto Color Quantization Bits CQ

Corto Normals Quantized Coding NQC
Corto Normals Delta Coding NDC

CWIPC Octree Depth OD
CWIPC JPEG Quantization Parameter JPEGQP

TABLE 7: Abbreviations.

B. MESH-BASED VOLUMETRIC VIDEO VISUAL QUALITY
In this section, we assess the visual quality of HUMAN4D
textured 3D mesh instances between the three different reso-
lutions of the underlying voxel-grid. The aim is to demon-
strate the positive correlation between the objective visual
quality and the utilized voxel-grid resolution used to recon-
struct the mesh-based volumetric data.

As mentioned in Section III-C3, the reconstruction of the
mesh-based volumetric data is achieved by applying the real-
time method proposed by Alexiadis et al. [8], parameterized

9http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-pcc-dmetric

in three different voxel-grid resolutions to produce watertight
textured 3D mesh instances of varying vertex and face counts.
Higher resolution grids lead to meshes of higher element
count that are, per se, expected to capture more photoreal-
istically and precisely the observed subjects.

Apart from the self-evident impact of higher resolution
sampling on the reconstructed hull’s spatial fidelity, addi-
tional benefits may arise with regard to the accurate col-
orization of its surface. To showcase and quantify this effect,
we firstly project the examined mesh on its respective RGB
images and sample the color of its fragments based on a
weighted contribution of the corresponding pixels. Then,
we render the mesh from the exact same viewpoints that
the aforementioned images were captured and compare the
synthesized images to their respective silhouette-cropped
textures, using conventional image quality metrics.

We conduct the assessment separately to H4D1 and H4D2
benchmarking subsets. The former, consisting of 4 subjects
with 14 sequences each, and each of these sequences with
100 sampled mRGBD frames, reconstructed in 3 voxel-grid
resolutions (i.e. r = {5, 6, 7}) and rendered from 4 view-
points, results in a total of 67, 200 rendered views of 16, 800
mesh instances. Similarly, the latter includes 2 couples, with
5 sequences of 100 frames each, reconstructed in the same
3 voxel-grid resolutions and rendered from corresponding
viewpoints, giving a total of 12, 000 views of 3, 000 3D
meshes.
Metrics. For the visual quality assessment, we opted to use
Peak Signal-to-Noise Ratio (PSNR) (Eq. 12) and Structural
Similarity Index (SSIM) as metrics to objectively quantify
the photometric and photorealistic consistency between the
captured, raw color (RGB) views and the mesh-based 4D
representations in the various voxel-grid resolutions on the
rendered views’ quality.

SSIM is a full-reference metric conceived as an improve-
ment over the traditional PSNR and MSE-family metrics and
is widely referenced in the video and photography industry
as it is believed to capture better the human perception
of visual quality. Instead of decomposing the input signals
and then estimating absolute errors, as in the case of MSE-
like metrics, SSIM incorporates into its calculations the fact
that images are inherently highly structured and thus their
topology and the relations that arise between their elements,
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TABLE 8: Single-person PSNR and SSIM

PSNR SSIM

Subject r=5 r=6 r=7 r=5 r=6 r=7

S1 36.18 36.59 36.70 0.98598 0.98685 0.98707
S2 34.51 34.84 34.89 0.98320 0.98389 0.98395
S3 33.48 33.71 33.73 0.98235 0.98278 0.98270
S4 33.36 33.54 33.55 0.98262 0.98302 0.98293

Average 34.38 34.67 34.72 0.98354 0.98413 0.98416

TABLE 9: Multi-person PSNR and SSIM

PSNR SSIM

Subjects r=5 r=6 r=7 r=5 r=6 r=7

S1 & S2 32.59 33.02 33.26 0.97513 0.97634 0.97720
S3 & S4 38.20 38.37 38.41 0.98346 0.98432 0.98488

Average 35.39 35.70 35.84 0.97930 0.98033 0.98104

due to that fact, should not be ignored. Luminance Masking
and Contrast Masking are two well-known visual perception
phenomena that are taken into account during the process
of obtaining SSIM measurements. The former is about the
low visibility of distortions in bright regions, while the latter
is about the masking of distortions in highly textured, non-
smooth, areas of an image.

The SSIM formula is composed of three individual mea-
surements of "structural similarity", luminance l, contrast c
and structure s between two windows x and y of similar size.
The individual comparison formulas are:

l(x, y) =
2µxµy + c1
µ2
x + µ2

y + c1
(13)

c(x, y) =
2σxσy + c2
σ2
x + σ2

y + c2
(14)

s(x, y) =
σxy + c3
σxσy + c3

(15)

with µx the average of x, µy the average of y, σ2
x the variance

of x, σ2
y the variance of y, σxy the covariance of x and y,

c1 = (k1L)
2, c2 = (k2L)

2, c3 = (c2/2) are three variables
to stabilize the division with weak denominator, L the dy-
namic range of the pixel values and k1 = 0.01, k2 = 0.03
by default. SSIM is then a weighted combination of these
comparative measures:

SSIM(x, y) = [l(x, y)α · c(x, y)β · s(x, y)γ ] (16)

where α, β, γ > 0 are parameters used to adjust the relative
importance of the three components. More on the SSIM and
its development can be found in [77].
Results. As can be seen in Tables 8 and 9, the experiments
conducted, validate the claim that increments of a textured
mesh voxel-grid resolution lead to increases in its objective
visual quality. Both for single- and multi-person evaluation
sets, PSNR increases in par with mesh resolution. From r = 5
to r = 6 the increase is more pronounced, while from r = 6
to r = 7, it seems to diminish, indicating that a further

increase in 3D mesh voxel-grid resolution may be futile,
at least as regards the texture fidelity in terms of PSNR.
The SSIM case generally follows the same trend, with the
exception of the S3 and S4 subjects from the single-person
subset, where post r = 6 increase in resolution does not seem
to further improve the SSIM of the textures. In these cases,
the r = 6 and r = 7 SSIM values are approximately equal,
exhibiting a difference of less than 10−4.

In Fig. 17, volumetric samples from the single- and multi-
person subsets are illustrated, rendered in the 3 different
voxel-grid resolutions along with the corresponding RGB
images from the same viewpoint. The increase of texture
quality we want to highlight in these views is most apparent
in the eyes area of the multi-person renderings. As can be
seen, for r = 5 the right eye of the male subject is blurry
and barely visible. As the voxel-grid resolution increases, the
eye gets crisper and better defined. Such behaviour can be
noticed in other areas of the volumetric data as well.

In a nutshell, experimental results indicate that the increase
of 3D mesh voxel-grid resolution indeed leads to objective
quality increase, though with diminishing returns. This latter
observation, together with the near real-time capabilities
of the mesh-based volumetric reconstruction pipeline for
r = 6 and the decreased bandwidth needs it requires when
compared with the r = 7 case, makes r = 6 voxel-grid
resolution the most sensible choice for a volumetric live-
streaming setup.

VI. DISCUSSION
We created HUMAN4D to provide the research community
with a public resource that fills identified gaps in publicly
available human-centric 4D datasets, consisting of motion
capture and HW-SYNCed volumetric data. In the flood of
recent literature, a plethora of algorithms and deep models
focus on 3D pose estimation, however, only a few methods
approach the task with the use of multi-view depth and volu-
metric data. That is probably due to the complexity and time-
consuming setup of multi-view capturing settings as well
as the lack of spatio-temporally aligned multi-view depth
maps with ground-truth data. To this end, we aim to enable
research on that direction encouraging the computer vision
community to develop and experiment with new 3D pose
estimation approaches on HUMAN4D by providing HW-
SYNCed depth and volumetric data along with ultra-accurate
ground-truth 3D poses for supervision and evaluation. With
regards to volumetric data, volumetric video is an emerging
immersive medium, being unique due to its fully three-
dimensional nature and its capability to enable six degrees of
freedom (6DoF) spectating when used in 4D environments.
HUMAN4D has been created on the principle to provide
spatio-temporally aligned mRGBD data captured to produce
point- and mesh-based volumetric videos, reconstructed and
compressed respecting online encoding and steady bit-rates.
On top of that, in most public datasets, the temporal misalign-
ment between the multiple color and depth streams adds extra
noise to the already noisy depth and color data, reducing the
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(a) r = 5 (b) r = 6 (c) r = 7 (d) RGB

(e) r = 5 (f) r = 6 (g) r = 7 (h) RGB

FIGURE 17: Textured mesh-based volumetric samples from H4D1 and H4D2 rendered in the 3 different voxel-grid resolutions
along with the corresponding RGB images from the same viewpoint.

quality of the volumetric video. In HUMAN4D, this noise
is absent due to the high synchronization precision (HW-
SYNC).

VII. CONCLUSION
In this paper we introduced HUMAN4D, a new multimodal
human-centric 4D dataset containing a large corpus with
more than 50K samples from daily, physical and social
activities of annotated spatio-temporally aligned multi-view
RGBD, volumetric and motion capture data along with audio
recordings. To the best of our knowledge, HUMAN4D is the
first dataset that provides HW-SYNCed mRGBD frames with
the use of recent consumer-grade depth sensing devices. We
also provide evaluation benchmarks based on discriminative
pose estimation and volumetric data compression methods.
We make all the data10 and code11 available online, includ-
ing the respective synchronization, calibration and camera
parameters, along with data loaders and other processing, vi-

10http://dx.doi.org/10.21227/xjzb-4y45
11https://github.com/tofis/human4d_dataset

sualization and evaluation tools, for academic use and further
research. In that scope, the authors commit to continuously
maintain the dataset for the community by adding new tools,
baselines and captures. Despite the continuous maintenance
of the dataset, benchmarking subsets will remain constant
to allow the assessment and comparison between new state-
of-the-art methods on the same datasets. We believe that
HUMAN4D and its associated tools will stimulate further
research in computer vision and data driven approaches,
enabling research on human pose estimation, real-time vol-
umetric video reconstruction and compression, with the use
of consumer-grade RGBD cameras sensors.
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